A084879
Number of (k,m,n)-multiantichains of multisets with k=3 and m=2.
Original entry on oeis.org
1, 3, 18, 189, 2106, 22113, 220158, 2114829, 19853586, 183662073, 1683014598, 15327998469, 139038783066, 1257874611633, 11360039237838, 102475402586109, 923689049088546, 8321664384098793, 74945758272961878, 674816500839877749
Offset: 0
-
[(9^n - 2*6^n + 3*3^n)/2: n in [0..50]]; // G. C. Greubel, Oct 08 2017
-
Table[(9^n - 2*6^n + 3*3^n)/2, {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
-
for(n=0,50, print1((9^n - 2*6^n + 3*3^n)/2, ", ")) \\ G. C. Greubel, Oct 08 2017
A084881
Number of (k,m,n)-multiantichains of multisets with k=3 and m=4.
Original entry on oeis.org
1, 3, 39, 1873, 237531, 35640463, 4584906969, 507411694933, 50579357233311, 4705226804488123, 418198020376490949, 36058355701780773793, 3046470997266047282091, 253885499519508283406983
Offset: 0
-
[(81^n - 12*54^n + 24*42^n + 4*36^n - 24*31^n + 18*27^n + 6*26^n - 108*18^n + 108*14^n + 83*9^n - 166*6^n + 90*3^n)/24: n in [0..50]]; // G. C. Greubel, Oct 08 2017
-
Table[(1/4!)*(81^n - 12*54^n + 24*42^n + 4*36^n - 24*31^n + 18*27^n + 6*26^n - 108*18^n + 108*14^n + 83*9^n - 166*6^n + 90*3^n), {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
-
for(n=0,50, print1((81^n - 12*54^n + 24*42^n + 4*36^n - 24*31^n + 18*27^n + 6*26^n - 108*18^n + 108*14^n + 83*9^n - 166*6^n + 90*3^n)/24, ", ")) \\ G. C. Greubel, Oct 08 2017
A056164
Number of ordered antichain covers of an unlabeled n-set; labeled T_1-hypergraphs (without empty hyperedges) with n hyperedges.
Original entry on oeis.org
1, 2, 6, 109, 191177
Offset: 1
There are 6 ordered antichain covers on an unlabeled 3-set: ({1,2,3}), ({1},{2,3}), ({2,3},{1}), ({1,2},{1,3}), ({1},{2},{3}), ({1,2},{1,3},{2,3}).
a(3)=1+3+2=6; a(4)=1+6+17+25+30+30=109; a(5)=1+10+71+429+2176+8310+20580+38640+60480+60480=191177.
- V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
- V. Jovovic and G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.
Cf.
A056074,
A056090,
A056093,
A000372,
A056005,
A056069-
A056071,
A056073,
A056046-
A056049,
A056052,
A056101,
A056104,
A051112-
A051118.
A084880
Number of (k,m,n)-multiantichains of multisets with k=3 and m=3.
Original entry on oeis.org
1, 3, 28, 701, 28156, 1105553, 38746288, 1242925421, 37586964436, 1093785614153, 31039025026648, 866337233127941, 23916052195646716, 655400382364459553, 17872830907936220608, 485794685997062639261, 13175148372787020760996
Offset: 0
- Goran Kilibarda and Vladeta Jovovic, Antichains of Multisets, J. Integer Seqs., Vol. 7, 2004.
- Index entries for linear recurrences with constant coefficients, signature (77,-2277,32895,-242514,854388,-1102248).
-
[(27^n - 6*18^n + 6*14^n + 9*9^n - 18*6^n + 14*3^n)/6: n in [0..50]]; // G. C. Greubel, Oct 08 2017
-
LinearRecurrence[{77,-2277,32895,-242514,854388,-1102248},{1,3,28,701, 28156,1105553},20] (* Harvey P. Dale, Apr 08 2015 *)
Table[(27^n - 6*18^n + 6*14^n + 9*9^n - 18*6^n + 14*3^n)/6, {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
-
for(n=0,50, print1((27^n - 6*18^n + 6*14^n + 9*9^n - 18*6^n + 14*3^n)/6, ", ")) \\ G. C. Greubel, Oct 08 2017
Comments