cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A372941 Numbers k that divide the k-th Domb number.

Original entry on oeis.org

1, 2, 4, 14, 28, 112, 133, 176, 224, 368, 388, 448, 616, 704, 784, 896, 1216, 1568, 1792, 3563, 4256, 5144, 6272, 8624, 8924, 9856, 11264, 11776, 13927, 16702, 23408, 32936, 38509, 42238, 43456, 43652, 43904, 46424, 67328, 73784, 76912, 78848, 81466, 110614, 118256
Offset: 1

Views

Author

Amiram Eldar, May 17 2024

Keywords

Comments

Numbers k such that k | A002895(k).

Examples

			2 is a term since A002895(2) = 28 = 2 * 14 is divisible by 2.
4 is a term since A002895(4) = 2716 = 4 * 679 is divisible by 4.
		

Crossrefs

Cf. A002895.
Similar sequences: A014847 (Catalan), A016089 (Lucas), A023172 (Fibonacci), A051177 (partition), A232570 (tribonacci), A246692 (Pell), A266969 (Motzkin).

Programs

  • Mathematica
    seq[kmax_] := Module[{d0 = 1, d1 = 4, d2, s = {1}}, Do[d2 = ((20*k^3 - 30*k^2 + 18*k - 4)*d1 - 64*(k-1)^3*d0)/k^3; If[Divisible[d2, k], AppendTo[s, k]]; d0 = d1; d1 = d2, {k, 2, kmax}]; s]; seq[5000]
  • PARI
    lista(kmax) = {my(d0 = 1, d1 = 4, d2); print1("1, "); for(k = 2, kmax, d2 = ((20*k^3 - 30*k^2 + 18*k - 4)*d1 - 64*(k-1)^3*d0)/k^3; if(!(d2 % k), print1(k, ", ")); d0 = d1; d1 = d2);}

A372943 Numbers k that divide the k-th Apéry number (A005258).

Original entry on oeis.org

1, 3, 21, 147, 217, 781, 903, 1323, 3249, 3267, 3591, 5929, 6897, 7623, 8001, 8673, 10017, 11187, 11997, 17181, 21413, 21791, 23529, 38829, 51183, 54033, 58653, 68229, 71391, 75593, 83853, 87813, 97641, 128331, 171647, 217143, 227829, 249159, 302841, 307347, 389403
Offset: 1

Views

Author

Amiram Eldar, May 17 2024

Keywords

Comments

Numbers k such that k | A005258(k).

Examples

			3 is a term since A005258(3) = 147 = 3 * 49 is divisible by 3.
		

Crossrefs

Cf. A005258.
Similar sequences: A014847 (Catalan), A016089 (Lucas), A023172 (Fibonacci), A051177 (partition), A232570 (tribonacci), A246692 (Pell), A266969 (Motzkin).

Programs

  • Mathematica
    seq[kmax_] := Module[{ap0 = 1, ap1 = 3, ap2, s = {1}}, Do[ap2 = ((11*k^2 - 11*k + 3)*ap1 + (k-1)^2*ap0)/k^2; If[Divisible[ap2, k], AppendTo[s, k]]; ap0 = ap1; ap1 = ap2, {k, 2, kmax}]; s]; seq[5000]
  • PARI
    lista(kmax) = {my(ap0 = 1, ap1 = 3, ap2); print1("1, "); for(k = 2, kmax, ap2 = ((11*k^2 - 11*k + 3)*ap1 + (k-1)^2*ap0)/k^2; if(!(ap2 % k), print1(k, ", ")); ap0 = ap1; ap1 = ap2);}

A373054 Numbers k that divide the k-th tetranacci number (A000078).

Original entry on oeis.org

1, 2, 22, 32, 80, 137, 179, 272, 320, 352, 600, 653, 859, 936, 991, 1279, 1280, 1306, 1601, 1609, 1632, 1672, 1982, 2089, 2152, 2437, 2560, 2591, 2693, 2789, 2897, 3120, 3202, 3701, 3823, 3847, 4110, 4212, 4451, 4691, 4751, 4919, 5120, 5182, 5280, 5386, 5431, 5479
Offset: 1

Views

Author

Amiram Eldar, May 20 2024

Keywords

Comments

Numbers k such that k | A000078(k).

Examples

			22 is a term since A000078(22) = 147312 = 22 * 6696 is divisible by 22.
		

Crossrefs

Cf. A000078.
Similar sequences: A014847 (Catalan), A016089 (Lucas), A023172 (Fibonacci), A051177 (partition), A232570 (tribonacci), A246692 (Pell), A266969 (Motzkin).

Programs

  • Mathematica
    With[{m = 10000}, Position[LinearRecurrence[{1, 1, 1, 1}, {0, 0, 1, 1}, m]/Range[m], _?IntegerQ] // Flatten]
  • PARI
    lista(kmax) = {my(t0 = 0, t1 = 0, t2 = 0, t3 = 1, t4 = 0); print1(1, ", ",  2, ", "); for(k = 4, kmax, t4 = t0 + t1 + t2 + t3; if(!(t4%k), print1(k, ", ")); t0 = t1; t1 = t2; t2 = t3; t3 = t4);}

A302752 Numbers k such that k divides the sum of largest parts of all partitions of k.

Original entry on oeis.org

1, 3, 4, 5, 11, 197, 487, 928, 10995, 19318
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 12 2018

Keywords

Comments

Numbers k such that k divides the total number of parts in all partitions of k.
Next term, if it exists, is greater than 100000. - Vaclav Kotesovec, May 04 2018

Examples

			5 is in the sequence because we have [5], [4, 1], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1], [1, 1, 1, 1, 1] and 5 + 4 + 3 + 3 + 2 + 2 + 1 = 20 is divisible by 5.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[200],Mod[Total[IntegerPartitions[#][[;;,1]]],#]==0&] (* The program generates the first six terms of the sequence. *) (* Harvey P. Dale, Oct 03 2023 *)

A363252 a(n) = gcd(A000041(n), A000009(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 5, 2, 2, 2, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 2, 3, 2, 2, 1, 4, 2, 3, 7, 2, 3, 1, 1, 1, 1, 21, 21, 2, 1, 1, 2, 6, 14, 3, 1, 2, 1, 1, 1, 1, 2, 1, 3, 4, 4, 17, 1, 2, 1, 2, 2, 4, 1, 3, 5, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 4, 1, 1, 1, 2, 11, 2
Offset: 0

Views

Author

Vaclav Kotesovec, May 23 2023, inspired by Zhi-Wei Sun

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
         `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    a:= n-> igcd(b(n), combinat[numbpart](n)):
    seq(a(n), n=0..120);  # Alois P. Heinz, May 23 2023
  • Mathematica
    Table[GCD[PartitionsP[n], PartitionsQ[n]], {n, 0, 100}]

A372942 Numbers k that divide the k-th Apéry number (A005259).

Original entry on oeis.org

1, 5, 55, 629, 3439, 8525, 17629, 74455, 120275, 176305, 244915, 250325, 628975, 817819, 839135, 910675, 912865, 936955, 1118435, 1147925, 2344127, 4434125, 7795715, 7888477, 9276275, 10205525
Offset: 1

Views

Author

Amiram Eldar, May 17 2024

Keywords

Comments

Numbers k such that k | A005259(k).

Crossrefs

Cf. A005259.
Similar sequences: A014847 (Catalan), A016089 (Lucas), A023172 (Fibonacci), A051177 (partition), A232570 (tribonacci), A246692 (Pell), A266969 (Motzkin).

Programs

  • Mathematica
    seq[kmax_] := Module[{ap0 = 1, ap1 = 5, ap2, s = {1}}, Do[ap2 = ((34*k^3 - 51*k^2 + 27*k - 5)*ap1 - (k-1)^3*ap0)/k^3; If[Divisible[ap2, k], AppendTo[s, k]]; ap0 = ap1; ap1 = ap2, {k, 2, kmax}]; s]; seq[5000]
  • PARI
    lista(kmax) = {my(ap0 = 1, ap1 = 5, ap2); print1("1, "); for(k = 2, kmax, ap2 = ((34*k^3 - 51*k^2 + 27*k - 5)*ap1 - (k-1)^3*ap0)/k^3; if(!(ap2 % k), print1(k, ", ")); ap0 = ap1; ap1 = ap2);}

Formula

5 is a term since A005259(5) = 819005 = 5 * 163801 is divisible by 5.

A372944 Numbers k that divide the k-th tangent (or "zag") number.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 68, 128, 256, 512, 592, 1024, 1156, 2048, 2056, 4096, 4112, 8192, 8224, 8576, 10928, 16384, 16448, 19652, 20512, 28936, 32768, 37888, 41024, 43882, 64804, 65536, 82048
Offset: 1

Views

Author

Amiram Eldar, May 17 2024

Keywords

Comments

Numbers k such that k | A000182(k).
All the powers of 2 are terms.

Examples

			2 is a term since A000182(2) = 2 is divisible by 2.
4 is a term since A000182(4) = 272 = 4 * 68 is divisible by 4.
		

Crossrefs

Cf. A000182.
Similar sequences: A014847 (Catalan), A016089 (Lucas), A023172 (Fibonacci), A051177 (partition), A232570 (tribonacci), A246692 (Pell), A266969 (Motzkin).

Programs

  • Mathematica
    Select[Range[1000], Divisible[((-4)^# - (-16)^#) * BernoulliB[2*#]/(2*#), #] &]
  • PARI
    is(n) = (((-4)^n - (-16)^n) * bernfrac(2*n) / (2*n)) % n == 0;

A372945 Numbers k that divide the k-th Wedderburn-Etherington number.

Original entry on oeis.org

1, 6, 36, 49, 61, 223, 4258, 9747
Offset: 1

Views

Author

Amiram Eldar, May 17 2024

Keywords

Comments

Numbers k such that k | A001190(k).
a(9) > 90000, if it exists.

Examples

			6 is a term since A001190(6) = 6 is divisible by 6.
36 is a term since A001190(36) = 249959727972 = 36 * 6943325777 is divisible by 36.
		

Crossrefs

Cf. A001190.
Similar sequences: A014847 (Catalan), A016089 (Lucas), A023172 (Fibonacci), A051177 (partition), A232570 (tribonacci), A246692 (Pell), A266969 (Motzkin).

Programs

  • Mathematica
    v[0] = 0; v[1] = 1; v[n_] := v[n] = Sum[v[k] * v[n-k], {k, 1, Floor[(n-1)/2]}] + If[EvenQ[n], v[n/2]*(v[n/2]+1)/2, 0]; Select[Range[10^4], Divisible[v[#], #] &]
  • PARI
    lista(kmax) = {my(v = vector(kmax, i, 1)); print1(1, ", "); for(k = 4, kmax, v[k] = sum(i = 1, (k-1)\2, v[i] * v[k-i]) + if(!(k % 2), v[k/2] * (v[k/2] + 1)/2); if(!(v[k] % k), print1(k, ", ")));}

A372946 Numbers k that divide the k-th NSW number.

Original entry on oeis.org

1, 7, 217, 3937, 6727, 6847, 51943, 170671, 330337, 385687, 2484247, 2566537, 2904007, 3020857, 3696967, 6465577, 9405337, 12021439, 19384207
Offset: 1

Views

Author

Amiram Eldar, May 17 2024

Keywords

Comments

Numbers k such that k | A002315(k).

Examples

			7 is a term since A002315(7) = 275807 = 7 * 39401 is divisible by 7.
		

Crossrefs

Similar sequences: A014847 (Catalan), A016089 (Lucas), A023172 (Fibonacci), A051177 (partition), A232570 (tribonacci), A246692 (Pell), A266969 (Motzkin).

Programs

  • Mathematica
    seq[kmax_] := Module[{nsw0 = 1, nsw1 = 7, nsw2, s = {1}}, Do[nsw2 = 6*nsw1 - nsw0; If[Divisible[nsw2, k], AppendTo[s, k]]; nsw0 = nsw1; nsw1 = nsw2, {k, 2, kmax}]; s]; seq[52000]
  • PARI
    lista(kmax) = {my(nsw0 = 1, nsw1 = 7, nsw2); print1("1, "); for(k = 2, kmax, nsw2 = 6*nsw1 - nsw0; if(!(nsw2 % k), print1(k, ", ")); nsw0 = nsw1; nsw1 = nsw2);}

A373055 Numbers k that divide the k-th term of the tribonacci sequence A000213.

Original entry on oeis.org

1, 3, 217, 13343, 549333, 1387663, 9356863, 22119541
Offset: 1

Views

Author

Amiram Eldar, May 21 2024

Keywords

Comments

Numbers k such that k | A000213(k).

Examples

			3 is a term since A000213(3) = 3 is divisible by 3.
		

Crossrefs

Cf. A000213.
Similar sequences: A014847 (Catalan), A016089 (Lucas), A023172 (Fibonacci), A051177 (partition), A232570 (tribonacci A000073), A246692 (Pell), A266969 (Motzkin).

Programs

  • Mathematica
    With[{m = 15000}, Position[LinearRecurrence[{1, 1, 1}, {1, 1, 3}, m]/Range[m], _?IntegerQ] // Flatten]
  • PARI
    lista(kmax) = {my(t0 = 1, t1 = 1, t2 = 1, t3); print1("1, "); for(k = 3, kmax, t3 = t0 + t1 + t2; if(!(t3 % k), print1(k, ", ")); t0 = t1; t1 = t2; t2 = t3);}
Previous Showing 21-30 of 31 results. Next