A189866
Number of ways to place n nonattacking composite pieces queen + leaper[1,5] on an n X n chessboard.
Original entry on oeis.org
1, 0, 0, 2, 10, 0, 0, 0, 40, 52, 160, 500, 2656, 11540, 67776, 415716, 2610520, 17450592, 124903880, 944965832, 7292031780
Offset: 1
A352662
Number of singly symmetric characteristic solutions to the n-superqueens problem.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 6, 11, 49, 79, 245, 498, 1192, 3798, 11594
Offset: 1
For n=10 the a(10)=1 solution is
+---------------------+
| . . . A . . . . . . |
| . . . . . . . A . . |
| A . . . . . . . . . |
| . . . . A . . . . . |
| . . . . . . . . A . |
| . A . . . . . . . . |
| . . . . . A . . . . |
| . . . . . . . . . A |
| . . A . . . . . . . |
| . . . . . . A . . . |
+---------------------+
- D. E. Knuth, The Art of Computer Programming, Section 7.2.2.3 (draft, March 2022).
A352663
Number of asymmetric characteristic solutions to the n-superqueens problem.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 18, 231, 642, 4040, 25320, 166201, 1115373, 8060958, 61981118, 497224414
Offset: 1
One of the a(11)=5 solutions is
+-----------------------+
| A . . . . . . . . . . |
| . . . . A . . . . . . |
| . . . . . . . . A . . |
| . A . . . . . . . . . |
| . . . . . A . . . . . |
| . . . . . . . . . A . |
| . . A . . . . . . . . |
| . . . . . . A . . . . |
| . . . . . . . . . . A |
| . . . A . . . . . . . |
| . . . . . . . A . . . |
+-----------------------+
and the other four are obtained by wraparound shifts.
- D. E. Knuth, The Art of Computer Programming, Section 7.2.2.3 (draft, March 2022).
A007631
Number of solutions to non-attacking reflecting queens problem.
Original entry on oeis.org
1, 1, 0, 0, 2, 4, 0, 2, 10, 32, 38, 140, 496, 1186, 3178, 16792, 82038, 289566, 1139874, 5914118, 33800010, 142337180, 721286448, 4384569864
Offset: 0
For n = 4, ((1,7), (2,5), (3,8), (4,6)) is an instance of such grouping. ((2,5), (1,7), (3,8), (4,6)) is considered to be the same grouping.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jordan Bell, Brett Stevens, A survey of known results and research areas for n-queens, Discrete Mathematics, Volume 309 (2009), pp 1-31.
- M. Gardner, Fractal Music, Hypercards and More, Freeman, NY, 1991, p. 240.
- G. B. Huff, On pairings of the first 2n natural numbers, Acta. Arith. 23 (1973) 117-126.
- D. A. Klarner, The Problem of Reflecting Queens, The American Mathematical Monthly, Vol. 74, No. 8 (Oct., 1967), pp. 953-955.
- M. Slater, Number theory Research Problem 1, Bull. Amer. Math. Soc. 69 (1963), 333.
-
a(n) = {nb = 0; for (j=0, n!-1, vp = numtoperm(n, j); vb = vector(n, k, vp[k]+n); vs = vector(n, k, vb[k]+k); vd = vector(n, k, vb[k]-k); if (#vs + #vd == #Set(concat(vs, vd)), nb++); ); nb; } \\ Michel Marcus, Apr 27 2016
A189867
Number of ways to place n nonattacking composite pieces queen + leaper[2,3] on an n X n chessboard.
Original entry on oeis.org
1, 0, 0, 2, 10, 0, 0, 0, 0, 48, 152, 472, 2696, 12320, 74436, 429620, 2515116, 16122496, 113016608, 843492920, 6575649316, 54694203188
Offset: 1
A189868
Number of ways to place n nonattacking composite pieces queen + leaper[2,4] on an n X n chessboard.
Original entry on oeis.org
1, 0, 0, 2, 0, 0, 0, 0, 0, 4, 64, 384, 2936, 10720, 62664, 420272, 2540584, 16373760, 115200080, 868564232, 6708291360
Offset: 1
A189869
Number of ways to place n nonattacking composite pieces queen + leaper[2,5] on an n X n chessboard.
Original entry on oeis.org
1, 0, 0, 2, 10, 4, 28, 20, 56, 72, 288, 1304, 6368, 22884, 125864, 755412, 4565572, 29862256, 207238124, 1540506028, 11774180220
Offset: 1
A133143
Maximal number of mutually nonattacking Super Queens on an n X n board. (A Super Queen is a queen with both queen and knight powers.)
Original entry on oeis.org
1, 1, 1, 2, 4, 4, 5, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
Offset: 1
Rachit Agrawal (rachit_agrawal(AT)daiict.ac.in), Dec 16 2007
a(4) = 2:
|X|0|0|0|
|0|0|0|X|
|0|0|0|0|
|0|0|0|0|
where X denotes the place of a Super Queen.
A189870
Number of ways to place n nonattacking composite pieces queen + leaper[3,4] on an n X n chessboard.
Original entry on oeis.org
1, 0, 0, 2, 2, 4, 28, 0, 20, 52, 280, 1192, 5520, 20196, 115936, 701836, 4174032, 27261284, 193428616, 1445733328, 11133210948
Offset: 1
A189871
Number of ways to place n nonattacking composite pieces queen + leaper[3,5] on an n X n chessboard.
Original entry on oeis.org
1, 0, 0, 2, 10, 0, 8, 24, 72, 116, 384, 1660, 7344, 24364, 130408, 743360, 4242704, 27018788, 190618152, 1431986780, 11053915716
Offset: 1
Comments