cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 106 results. Next

A326520 Number of normal multiset partitions of weight n where every part has the same average.

Original entry on oeis.org

1, 1, 3, 7, 17, 35, 103, 197
Offset: 0

Views

Author

Gus Wiseman, Jul 12 2019

Keywords

Comments

A multiset partition is normal if it covers an initial interval of positive integers.

Examples

			The a(0) = 1 through a(4) = 17 normal multiset partitions where every part has the same average:
  {}  {{1}}  {{1,1}}    {{1,1,1}}      {{1,1,1,1}}
             {{1,2}}    {{1,1,2}}      {{1,1,1,2}}
             {{1},{1}}  {{1,2,2}}      {{1,1,2,2}}
                        {{1,2,3}}      {{1,1,2,3}}
                        {{1},{1,1}}    {{1,2,2,2}}
                        {{2},{1,3}}    {{1,2,2,3}}
                        {{1},{1},{1}}  {{1,2,3,3}}
                                       {{1,2,3,4}}
                                       {{1},{1,1,1}}
                                       {{1,1},{1,1}}
                                       {{1,2},{1,2}}
                                       {{1,3},{2,2}}
                                       {{1,4},{2,3}}
                                       {{2},{1,2,3}}
                                       {{1},{1},{1,1}}
                                       {{2},{2},{1,3}}
                                       {{1},{1},{1},{1}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@mps/@allnorm[n],SameQ@@Mean/@#&]],{n,0,5}]

A326521 Number of normal multiset partitions of weight n where each part has a different average.

Original entry on oeis.org

1, 1, 3, 11, 49, 251, 1418, 8904
Offset: 0

Views

Author

Gus Wiseman, Jul 12 2019

Keywords

Comments

A multiset partition is normal if it covers an initial interval of positive integers.

Examples

			The a(0) = 1 through a(3) = 11 normal multiset partitions where each part has a different average:
  {}  {{1}}  {{1,1}}    {{1,1,1}}
             {{1,2}}    {{1,1,2}}
             {{1},{2}}  {{1,2,2}}
                        {{1,2,3}}
                        {{1},{1,2}}
                        {{1},{2,2}}
                        {{1},{2,3}}
                        {{2},{1,1}}
                        {{2},{1,2}}
                        {{3},{1,2}}
                        {{1},{2},{3}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@mps/@allnorm[n],UnsameQ@@Mean/@#&]],{n,0,5}]

A362559 Number of integer partitions of n whose weighted sum is divisible by n.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 3, 3, 5, 4, 5, 7, 8, 11, 14, 14, 18, 25, 28, 26, 42, 47, 52, 73, 77, 100, 118, 122, 158, 188, 219, 266, 313, 367, 412, 489, 578, 698, 809, 914, 1094, 1268, 1472, 1677, 1948, 2305, 2656, 3072, 3527, 4081, 4665, 5342, 6225, 7119, 8150, 9408
Offset: 1

Views

Author

Gus Wiseman, Apr 24 2023

Keywords

Comments

The (one-based) weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i*y_i. This is also the sum of partial sums of the reverse.
Also the number of n-multisets of positive integers that (1) have integer mean, (2) cover an initial interval, and (3) have weakly decreasing multiplicities.
Conjecture: A partition of n has weighted sum divisible by n iff its reverse has weighted sum divisible by n.

Examples

			The weighted sum of y = (4,2,2,1) is 1*4+2*2+3*2+4*1 = 18, which is a multiple of 9, so y is counted under a(9).
The a(1) = 1 through a(9) = 5 partitions:
  (1)  (2)  (3)    (4)  (5)      (6)     (7)        (8)       (9)
            (111)       (11111)  (222)   (3211)     (3311)    (333)
                                 (3111)  (1111111)  (221111)  (4221)
                                                              (222111)
                                                              (111111111)
		

Crossrefs

For median instead of mean we have A362558.
The complement is counted by A362560.
A000041 counts integer partitions, strict A000009.
A008284/A058398/A327482 count partitions by mean.
A264034 counts partitions by weighted sum.
A304818 = weighted sum of prime indices, row-sums of A359361.
A318283 = weighted sum of reversed prime indices, row-sums of A358136.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Divisible[Total[Accumulate[Reverse[#]]],n]&]],{n,30}]

A363948 Numbers whose prime indices have mean < 3/2.

Original entry on oeis.org

2, 4, 8, 12, 16, 24, 32, 48, 64, 72, 80, 96, 128, 144, 160, 192, 256, 288, 320, 384, 432, 448, 480, 512, 576, 640, 768, 864, 896, 960, 1024, 1152, 1280, 1536, 1728, 1792, 1920, 2048, 2304, 2560, 2592, 2688, 2816, 2880, 3072, 3200, 3456, 3584, 3840, 4096, 4608
Offset: 1

Views

Author

Gus Wiseman, Jul 02 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The initial terms, prime indices, and means:
    2: {1} -> 1
    4: {1,1} -> 1
    8: {1,1,1} -> 1
   12: {1,1,2} -> 4/3
   16: {1,1,1,1} -> 1
   24: {1,1,1,2} -> 5/4
   32: {1,1,1,1,1} -> 1
   48: {1,1,1,1,2} -> 6/5
   64: {1,1,1,1,1,1} -> 1
   72: {1,1,1,2,2} -> 7/5
   80: {1,1,1,1,3} -> 7/5
   96: {1,1,1,1,1,2} -> 7/6
		

Crossrefs

These partitions are counted by A363947.
Prime indices have mean A326567/A326568.
For low mode we have A360015, high A360013.
Positions of 1's in A363489.
A112798 lists prime indices, length A001222, sum A056239.
A316413 ranks partitions with integer mean, counted by A067538.
A360005 gives twice the median of prime indices.
A363949 ranks partitions with low mean 1, counted by A025065.
A363950 ranks partitions with low mean 2, counted by A026905 redoubled.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Mean[prix[#]]<3/2&]

A326672 The positions of ones in the binary expansion of n have integer geometric mean.

Original entry on oeis.org

1, 2, 4, 8, 9, 13, 16, 18, 26, 32, 36, 52, 64, 72, 104, 128, 144, 208, 256, 257, 288, 321, 416, 512, 514, 576, 642, 832, 1024, 1028, 1152, 1284, 1664, 2048, 2056, 2304, 2568, 3328, 4096, 4112, 4608, 5136, 6656, 8192, 8224, 9216, 10272, 13312, 16384, 16448
Offset: 1

Views

Author

Gus Wiseman, Jul 17 2019

Keywords

Crossrefs

Partitions with integer geometric mean are A067539.
Subsets with integer geometric mean are A326027.
Factorizations with integer geometric mean are A326028.
Numbers whose binary expansion positions have integer mean are A326669.
Numbers whose binary expansion positions are relatively prime are A326674.
Numbers whose reversed binary expansion positions have integer geometric mean are A326673.

Programs

  • Mathematica
    Select[Range[100],IntegerQ[GeometricMean[Join@@Position[IntegerDigits[#,2],1]]]&]

A360008 Positions of first appearances in the sequence giving the mean of prime indices (A326567/A326568).

Original entry on oeis.org

1, 3, 5, 6, 7, 11, 12, 13, 14, 17, 18, 19, 23, 24, 26, 29, 31, 37, 38, 41, 42, 43, 47, 48, 52, 53, 54, 58, 59, 61, 67, 71, 72, 73, 74, 76, 79, 83, 86, 89, 92, 96, 97, 101, 103, 104, 106, 107, 108, 109, 113, 122, 124, 127, 131, 137, 139, 142, 148, 149, 151, 152
Offset: 1

Views

Author

Gus Wiseman, Jan 24 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
    1: {}
    3: {2}
    5: {3}
    6: {1,2}
    7: {4}
   11: {5}
   12: {1,1,2}
   13: {6}
   14: {1,4}
   17: {7}
   18: {1,2,2}
   19: {8}
   23: {9}
   24: {1,1,1,2}
		

Crossrefs

Positions of first appearances in A326567/A326568.
The version for median instead of mean is A360007, unsorted A360006.
A058398 counts partitions by mean, see also A008284, A327482.
A112798 lists prime indices, length A001222, sum A056239.
A316413 lists numbers whose prime indices have integer mean.
A326567/A326568 gives mean of prime indices.
A359908 = numbers w/ integer median of prime indices, complement A359912.

Programs

  • Mathematica
    nn=1000;
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    seq=Table[If[n==1,1,Mean[prix[n]]],{n,nn}];
    Select[Range[nn],FreeQ[seq[[Range[#-1]]],seq[[#]]]&]

A361906 Number of integer partitions of n such that (length) * (maximum) >= 2*n.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 3, 5, 9, 15, 19, 36, 43, 68, 96, 125, 171, 232, 297, 418, 529, 676, 853, 1156, 1393, 1786, 2316, 2827, 3477, 4484, 5423, 6677, 8156, 10065, 12538, 15121, 17978, 22091, 26666, 32363, 38176, 46640, 55137, 66895, 79589, 92621, 111485, 133485
Offset: 1

Views

Author

Gus Wiseman, Mar 29 2023

Keywords

Comments

Also partitions such that (maximum) >= 2*(mean).
These are partitions whose complement (see example) has size >= n.

Examples

			The a(6) = 2 through a(10) = 15 partitions:
  (411)   (511)    (611)     (621)      (721)
  (3111)  (4111)   (4211)    (711)      (811)
          (31111)  (5111)    (5211)     (5221)
                   (41111)   (6111)     (5311)
                   (311111)  (42111)    (6211)
                             (51111)    (7111)
                             (321111)   (42211)
                             (411111)   (43111)
                             (3111111)  (52111)
                                        (61111)
                                        (421111)
                                        (511111)
                                        (3211111)
                                        (4111111)
                                        (31111111)
The partition y = (4,2,1,1) has length 4 and maximum 4, and 4*4 >= 2*8, so y is counted under a(8).
The partition y = (3,2,1,1) has length 4 and maximum 3, and 4*3 is not >= 2*7, so y is not counted under a(7).
The partition y = (3,2,1,1) has diagram:
  o o o
  o o .
  o . .
  o . .
with complement (shown in dots) of size 5, and 5 is not >= 7, so y is not counted under a(7).
		

Crossrefs

For length instead of mean we have A237752, reverse A237755.
For minimum instead of mean we have A237821, reverse A237824.
For median instead of mean we have A361859, reverse A361848.
The unequal case is A361907.
The complement is counted by A361852.
The equal case is A361853, ranks A361855.
Reversing the inequality gives A361851.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, A058398 by mean.
A051293 counts subsets with integer mean.
A067538 counts partitions with integer mean, strict A102627, ranks A316413.
A268192 counts partitions by complement size, ranks A326844.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[#]*Max@@#>=2n&]],{n,30}]

A361907 Number of integer partitions of n such that (length) * (maximum) > 2*n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 3, 4, 7, 11, 19, 26, 43, 60, 80, 115, 171, 201, 297, 374, 485, 656, 853, 1064, 1343, 1758, 2218, 2673, 3477, 4218, 5423, 6523, 7962, 10017, 12104, 14409, 17978, 22031, 26318, 31453, 38176, 45442, 55137, 65775, 77451, 92533, 111485, 131057
Offset: 1

Views

Author

Gus Wiseman, Mar 29 2023

Keywords

Comments

Also partitions such that (maximum) > 2*(mean).
These are partitions whose complement (see example) has size > n.

Examples

			The a(7) = 3 through a(10) = 11 partitions:
  (511)    (611)     (711)      (721)
  (4111)   (5111)    (5211)     (811)
  (31111)  (41111)   (6111)     (6211)
           (311111)  (42111)    (7111)
                     (51111)    (52111)
                     (411111)   (61111)
                     (3111111)  (421111)
                                (511111)
                                (3211111)
                                (4111111)
                                (31111111)
The partition y = (3,2,1,1) has length 4 and maximum 3, and 4*3 is not > 2*7, so y is not counted under a(7).
The partition y = (4,2,1,1) has length 4 and maximum 4, and 4*4 is not > 2*8, so y is not counted under a(8).
The partition y = (5,1,1,1) has length 4 and maximum 5, and 4*5 > 2*8, so y is counted under a(8).
The partition y = (5,2,1,1) has length 4 and maximum 5, and 4*5 > 2*9, so y is counted under a(9).
The partition y = (3,2,1,1) has diagram:
  o o o
  o o .
  o . .
  o . .
with complement (shown in dots) of size 5, and 5 is not > 7, so y is not counted under a(7).
		

Crossrefs

For length instead of mean we have A237751, reverse A237754.
For minimum instead of mean we have A237820, reverse A053263.
The complement is counted by A361851, median A361848.
Reversing the inequality gives A361852.
The equal version is A361853.
For median instead of mean we have A361857, reverse A361858.
Allowing equality gives A361906, median A361859.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, A058398 by mean.
A051293 counts subsets with integer mean.
A067538 counts partitions with integer mean, strict A102627, ranks A316413.
A116608 counts partitions by number of distinct parts.
A268192 counts partitions by complement size, ranks A326844.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[#]*Max@@#>2n&]],{n,30}]

A271654 a(n) = Sum_{k|n} binomial(n-1,k-1).

Original entry on oeis.org

1, 2, 2, 5, 2, 17, 2, 44, 30, 137, 2, 695, 2, 1731, 1094, 6907, 2, 30653, 2, 97244, 38952, 352739, 2, 1632933, 10628, 5200327, 1562602, 20357264, 2, 87716708, 2, 303174298, 64512738, 1166803145, 1391282, 4978661179, 2, 17672631939, 2707475853, 69150651910, 2, 286754260229, 2, 1053966829029, 115133177854, 4116715363847, 2, 16892899722499, 12271514, 63207357886437
Offset: 1

Views

Author

Keywords

Comments

Also the number of compositions of n whose length divides n, i.e., compositions with integer mean, ranked by A096199. - Gus Wiseman, Sep 28 2022

Examples

			From _Gus Wiseman_, Sep 28 2022: (Start)
The a(1) = 1 through a(6) = 17 compositions with integer mean:
  (1)  (2)    (3)      (4)        (5)          (6)
       (1,1)  (1,1,1)  (1,3)      (1,1,1,1,1)  (1,5)
                       (2,2)                   (2,4)
                       (3,1)                   (3,3)
                       (1,1,1,1)               (4,2)
                                               (5,1)
                                               (1,1,4)
                                               (1,2,3)
                                               (1,3,2)
                                               (1,4,1)
                                               (2,1,3)
                                               (2,2,2)
                                               (2,3,1)
                                               (3,1,2)
                                               (3,2,1)
                                               (4,1,1)
                                               (1,1,1,1,1,1)
(End)
		

Crossrefs

Cf. A056045.
The version for nonempty subsets is A051293, geometric A326027.
The version for partitions is A067538, ranked by A316413, strict A102627.
These compositions are ranked by A096199.
The version for factorizations is A326622, geometric A326028.
A011782 counts compositions.
A067539 = partitions w integer geo mean, ranked by A326623, strict A326625.
A100346 counts compositions into divisors, partitions A018818.

Programs

  • Maple
    a:= n-> add(binomial(n-1, d-1), d=numtheory[divisors](n)):
    seq(a(n), n=1..50);  # Alois P. Heinz, Dec 03 2023
  • Mathematica
    Table[Length[Join @@ Permutations/@Select[IntegerPartitions[n],IntegerQ[Mean[#]]&]],{n,15}] (* Gus Wiseman, Sep 28 2022 *)
  • PARI
    a(n)=sumdiv(n,k,binomial(n-1,k-1))

A326536 MM-numbers of multiset partitions where every part has the same average.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 57, 59, 61, 63, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 115, 121, 125, 127, 128, 131, 133, 137, 139, 145, 147, 149, 151, 157, 159, 163, 167
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2019

Keywords

Comments

First differs from A322902 in having 145.
These are numbers where each prime index has the same average of prime indices. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of multiset partitions where every part has the same average, preceded by their MM-numbers, begins:
   1: {}
   2: {{}}
   3: {{1}}
   4: {{},{}}
   5: {{2}}
   7: {{1,1}}
   8: {{},{},{}}
   9: {{1},{1}}
  11: {{3}}
  13: {{1,2}}
  16: {{},{},{},{}}
  17: {{4}}
  19: {{1,1,1}}
  21: {{1},{1,1}}
  23: {{2,2}}
  25: {{2},{2}}
  27: {{1},{1},{1}}
  29: {{1,3}}
  31: {{5}}
  32: {{},{},{},{},{}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],SameQ@@Mean/@primeMS/@primeMS[#]&]
Previous Showing 41-50 of 106 results. Next