cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A326518 Number of normal multiset partitions of weight n where every part has the same sum.

Original entry on oeis.org

1, 1, 3, 7, 15, 31, 75, 169, 445, 1199, 3471
Offset: 0

Views

Author

Gus Wiseman, Jul 12 2019

Keywords

Comments

A multiset partition is normal if it covers an initial interval of positive integers.

Examples

			The a(0) = 1 through a(4) = 15 normal multiset partitions:
  {}  {{1}}  {{1,1}}    {{1,1,1}}      {{1,1,1,1}}
             {{1,2}}    {{1,1,2}}      {{1,1,1,2}}
             {{1},{1}}  {{1,2,2}}      {{1,1,2,2}}
                        {{1,2,3}}      {{1,1,2,3}}
                        {{2},{1,1}}    {{1,2,2,2}}
                        {{3},{1,2}}    {{1,2,2,3}}
                        {{1},{1},{1}}  {{1,2,3,3}}
                                       {{1,2,3,4}}
                                       {{1,1},{1,1}}
                                       {{1,2},{1,2}}
                                       {{1,3},{2,2}}
                                       {{1,4},{2,3}}
                                       {{2},{2},{1,1}}
                                       {{3},{3},{1,2}}
                                       {{1},{1},{1},{1}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@mps/@allnorm[n],SameQ@@Total/@#&]],{n,0,5}]

Extensions

a(10) from Robert Price, Apr 04 2025

A326519 Number of normal multiset partitions of weight n where each part has a different sum.

Original entry on oeis.org

1, 1, 3, 11, 51, 259, 1461, 9133, 62348, 459547, 3632419
Offset: 0

Views

Author

Gus Wiseman, Jul 12 2019

Keywords

Comments

A multiset partition is normal if it covers an initial interval of positive integers.

Examples

			The a(0) = 1 through a(3) = 11 normal multiset partitions:
  {}  {{1}}  {{1,1}}    {{1,1,1}}
             {{1,2}}    {{1,1,2}}
             {{1},{2}}  {{1,2,2}}
                        {{1,2,3}}
                        {{1},{1,1}}
                        {{1},{1,2}}
                        {{1},{2,2}}
                        {{1},{2,3}}
                        {{2},{1,2}}
                        {{2},{1,3}}
                        {{1},{2},{3}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@mps/@allnorm[n],UnsameQ@@Total/@#&]],{n,0,5}]

Extensions

a(8)-a(10) from Robert Price, Apr 03 2025

A317583 Number of multiset partitions of normal multisets of size n such that all blocks have the same size.

Original entry on oeis.org

1, 4, 8, 30, 32, 342, 128, 3754, 11360, 56138, 2048, 3834670, 8192, 27528494, 577439424, 2681075210, 131072, 238060300946, 524288, 11045144602614, 115488471132032, 49840258213638, 8388608, 152185891301461434, 140102945910265344, 124260001149229146, 85092642310351607968
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2018

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers.
a(n) is the number of nonnegative integer matrices with total sum n, nonzero rows and each column with the same sum with columns in nonincreasing lexicographic order. - Andrew Howroyd, Jan 15 2020

Examples

			The a(3) = 8 multiset partitions:
  {{1,1,1}}
  {{1,1,2}}
  {{1,2,2}}
  {{1,2,3}}
  {{1},{1},{1}}
  {{1},{1},{2}}
  {{1},{2},{2}}
  {{1},{2},{3}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    Table[Length[Select[Join@@mps/@allnorm[n],SameQ@@Length/@#&]],{n,8}]
  • PARI
    \\ here U(n,m) gives number for m blocks of size n.
    U(n,m)={sum(k=1, n*m, binomial(binomial(k+n-1, n)+m-1, m)*sum(r=k, n*m, binomial(r, k)*(-1)^(r-k)) )}
    a(n)={sumdiv(n, d, U(d, n/d))} \\ Andrew Howroyd, Sep 15 2018

Formula

a(p) = 2^p for prime p. - Andrew Howroyd, Sep 15 2018
a(n) = Sum_{d|n} A331315(n/d, d). - Andrew Howroyd, Jan 15 2020

Extensions

Terms a(9) and beyond from Andrew Howroyd, Sep 15 2018

A326517 Number of normal multiset partitions of weight n where each part has a different size.

Original entry on oeis.org

1, 1, 2, 12, 28, 140, 956, 3520, 17792, 111600, 1144400, 4884064, 34907936, 214869920, 1881044032, 25687617152, 139175009920, 1098825972608, 8770328141888, 74286112885504, 784394159958848, 15114871659653952, 92392468773724544, 889380453354852416, 7652770202041529856
Offset: 0

Views

Author

Gus Wiseman, Jul 12 2019

Keywords

Comments

A multiset partition is normal if it covers an initial interval of positive integers.

Examples

			The a(0) = 1 through a(3) = 12 normal multiset partitions:
  {}  {{1}}  {{1,1}}  {{1,1,1}}
             {{1,2}}  {{1,1,2}}
                      {{1,2,2}}
                      {{1,2,3}}
                      {{1},{1,1}}
                      {{1},{1,2}}
                      {{1},{2,2}}
                      {{1},{2,3}}
                      {{2},{1,1}}
                      {{2},{1,2}}
                      {{2},{1,3}}
                      {{3},{1,2}}
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1, k)*binomial(i+k-1, k-1)^j, j=0..min(1, n/i))))
        end:
    a:= n->add(add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..n), k=0..n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Sep 23 2023
  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@mps/@allnorm[n],UnsameQ@@Length/@#&]],{n,0,6}]
  • PARI
    R(n, k)={Vec(prod(j=1, n, 1 + binomial(k+j-1, j)*x^j + O(x*x^n)))}
    seq(n)={sum(k=0, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)))} \\ Andrew Howroyd, Feb 07 2020

Extensions

Terms a(8) and beyond from Andrew Howroyd, Feb 07 2020

A326513 Number of set partitions of {1..n} where each block has a different average.

Original entry on oeis.org

1, 1, 2, 4, 12, 40, 154, 650, 3024, 15110, 81538, 468494, 2863340, 18481390, 125838194, 897725927, 6715102246, 52372397021, 425716871241, 3594451206166, 31509992921241, 285799247349838, 2682935185643622, 25990339824995969, 259777696236210943, 2673388551328088666
Offset: 0

Views

Author

Gus Wiseman, Jul 11 2019

Keywords

Examples

			The a(1) = 1 through a(4) = 12 set partitions:
  {{1}}  {{1,2}}    {{1,2,3}}      {{1,2,3,4}}
         {{1},{2}}  {{1},{2,3}}    {{1},{2,3,4}}
                    {{1,2},{3}}    {{1,2},{3,4}}
                    {{1},{2},{3}}  {{1,2,3},{4}}
                                   {{1,2,4},{3}}
                                   {{1,3},{2,4}}
                                   {{1,3,4},{2}}
                                   {{1},{2},{3,4}}
                                   {{1},{2,3},{4}}
                                   {{1,2},{3},{4}}
                                   {{1,4},{2},{3}}
                                   {{1},{2},{3},{4}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],UnsameQ@@Mean/@#&]],{n,0,8}]

Extensions

a(12) from Alois P. Heinz, Jul 12 2019
a(13)-a(25) from Christian Sievers, Aug 20 2024

A326516 Number of factorizations of n into factors > 1 where each factor has a different average of prime indices.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 4, 1, 1, 2, 2, 2, 5, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 8, 1, 2, 3, 1, 2, 5, 1, 3, 2, 5, 1, 8, 1, 2, 3, 3, 2, 5, 1, 5, 1, 2, 1, 8, 2, 2, 2, 4, 1, 7, 2, 3, 2, 2, 2, 6, 1, 3, 3, 5, 1, 5, 1, 4, 4
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(60) = 8 factorizations: (2*5*6), (3*4*5), (2*30), (3*20), (4*15), (5*12), (6*10), (60).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],UnsameQ@@Mean/@primeMS/@#&]],{n,100}]
  • PARI
    avgpis(n) = { my(f=factor(n)); f[,1] = apply(primepi,f[,1]); (1/bigomega(n))*sum(i=1,#f~,f[i,2]*f[i,1]); };
    all_have_different_average_of_pis(facs) = if(!#facs, 1, (#Set(apply(avgpis,facs)) == #facs));
    A326516(n, m=n, facs=List([])) = if(1==n, all_have_different_average_of_pis(facs), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A326516(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 20 2025

A326537 MM-numbers of multiset partitions where each part has a different average.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 51, 53, 55, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 106, 107, 109, 110
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2019

Keywords

Comments

These are numbers where each prime index has a different average of prime indices. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of multiset partitions where each part has a different average, preceded by their MM-numbers, begins:
   1: {}
   2: {{}}
   3: {{1}}
   5: {{2}}
   6: {{},{1}}
   7: {{1,1}}
  10: {{},{2}}
  11: {{3}}
  13: {{1,2}}
  14: {{},{1,1}}
  15: {{1},{2}}
  17: {{4}}
  19: {{1,1,1}}
  22: {{},{3}}
  23: {{2,2}}
  26: {{},{1,2}}
  29: {{1,3}}
  30: {{},{1},{2}}
  31: {{5}}
  33: {{1},{3}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],UnsameQ@@Mean/@primeMS/@primeMS[#]&]

A326520 Number of normal multiset partitions of weight n where every part has the same average.

Original entry on oeis.org

1, 1, 3, 7, 17, 35, 103, 197
Offset: 0

Views

Author

Gus Wiseman, Jul 12 2019

Keywords

Comments

A multiset partition is normal if it covers an initial interval of positive integers.

Examples

			The a(0) = 1 through a(4) = 17 normal multiset partitions where every part has the same average:
  {}  {{1}}  {{1,1}}    {{1,1,1}}      {{1,1,1,1}}
             {{1,2}}    {{1,1,2}}      {{1,1,1,2}}
             {{1},{1}}  {{1,2,2}}      {{1,1,2,2}}
                        {{1,2,3}}      {{1,1,2,3}}
                        {{1},{1,1}}    {{1,2,2,2}}
                        {{2},{1,3}}    {{1,2,2,3}}
                        {{1},{1},{1}}  {{1,2,3,3}}
                                       {{1,2,3,4}}
                                       {{1},{1,1,1}}
                                       {{1,1},{1,1}}
                                       {{1,2},{1,2}}
                                       {{1,3},{2,2}}
                                       {{1,4},{2,3}}
                                       {{2},{1,2,3}}
                                       {{1},{1},{1,1}}
                                       {{2},{2},{1,3}}
                                       {{1},{1},{1},{1}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@mps/@allnorm[n],SameQ@@Mean/@#&]],{n,0,5}]

A361866 Number of set partitions of {1..n} with block-means summing to an integer.

Original entry on oeis.org

1, 1, 1, 3, 8, 22, 75, 267, 1119, 4965, 22694, 117090, 670621, 3866503, 24113829, 161085223, 1120025702, 8121648620, 62083083115, 492273775141, 4074919882483
Offset: 0

Views

Author

Gus Wiseman, Apr 04 2023

Keywords

Examples

			The a(1) = 1 through a(4) = 8 set partitions:
  {{1}}  {{1}{2}}  {{123}}      {{1}{234}}
                   {{13}{2}}    {{12}{34}}
                   {{1}{2}{3}}  {{123}{4}}
                                {{13}{24}}
                                {{14}{23}}
                                {{1}{24}{3}}
                                {{13}{2}{4}}
                                {{1}{2}{3}{4}}
The set partition y = {{1,2},{3,4}} has block-means {3/2,7/2}, with sum 5, so y is counted under a(4).
		

Crossrefs

For mean instead of sum we have A361865, for median A361864.
For median instead of mean we have A361911.
A000110 counts set partitions.
A067538 counts partitions with integer mean, ranks A326836, strict A102627.
A308037 counts set partitions with integer mean block-size.
A327475 counts subsets with integer mean, median A000975.
A327481 counts subsets by mean, median A013580.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],IntegerQ[Total[Mean/@#]]&]],{n,6}]

Extensions

a(14)-a(20) from Christian Sievers, May 12 2025

A361865 Number of set partitions of {1..n} such that the mean of the means of the blocks is an integer.

Original entry on oeis.org

1, 0, 3, 2, 12, 18, 101, 232, 1547, 3768, 24974, 116728, 687419, 3489664, 26436217, 159031250, 1129056772
Offset: 1

Views

Author

Gus Wiseman, Apr 04 2023

Keywords

Examples

			The set partition y = {{1,4},{2,5},{3}} has block-means {5/2,7/2,3}, with mean 3, so y is counted under a(5).
The a(1) = 1 through a(5) = 12 set partitions:
  {{1}}  .  {{123}}      {{1}{234}}  {{12345}}
            {{13}{2}}    {{123}{4}}  {{1245}{3}}
            {{1}{2}{3}}              {{135}{24}}
                                     {{15}{234}}
                                     {{1}{234}{5}}
                                     {{12}{3}{45}}
                                     {{135}{2}{4}}
                                     {{14}{25}{3}}
                                     {{15}{24}{3}}
                                     {{1}{24}{3}{5}}
                                     {{15}{2}{3}{4}}
                                     {{1}{2}{3}{4}{5}}
		

Crossrefs

For median instead of mean we have A361864.
For sum instead of outer mean we have A361866, median A361911.
A000110 counts set partitions.
A067538 counts partitions with integer mean, ranks A326836, strict A102627.
A308037 counts set partitions whose block-sizes have integer mean.
A327475 counts subsets with integer mean, median A000975.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],IntegerQ[Mean[Mean/@#]]&]],{n,6}]

Extensions

a(13)-a(17) from Christian Sievers, Jun 30 2025
Showing 1-10 of 11 results. Next