cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A038041 Number of ways to partition an n-set into subsets of equal size.

Original entry on oeis.org

1, 2, 2, 5, 2, 27, 2, 142, 282, 1073, 2, 32034, 2, 136853, 1527528, 4661087, 2, 227932993, 2, 3689854456, 36278688162, 13749663293, 2, 14084955889019, 5194672859378, 7905858780927, 2977584150505252, 13422745388226152, 2, 1349877580746537123, 2
Offset: 1

Views

Author

Keywords

Comments

a(n) = 2 iff n is prime with a(p) = card{ 1|2|3|...|p-1|p, 123...p } = 2. - Bernard Schott, May 16 2019

Examples

			a(4) = card{ 1|2|3|4, 12|34, 14|23, 13|24, 1234 } = 5.
From _Gus Wiseman_, Jul 12 2019: (Start)
The a(6) = 27 set partitions:
  {{1}{2}{3}{4}{5}{6}}  {{12}{34}{56}}  {{123}{456}}  {{123456}}
                        {{12}{35}{46}}  {{124}{356}}
                        {{12}{36}{45}}  {{125}{346}}
                        {{13}{24}{56}}  {{126}{345}}
                        {{13}{25}{46}}  {{134}{256}}
                        {{13}{26}{45}}  {{135}{246}}
                        {{14}{23}{56}}  {{136}{245}}
                        {{14}{25}{36}}  {{145}{236}}
                        {{14}{26}{35}}  {{146}{235}}
                        {{15}{23}{46}}  {{156}{234}}
                        {{15}{24}{36}}
                        {{15}{26}{34}}
                        {{16}{23}{45}}
                        {{16}{24}{35}}
                        {{16}{25}{34}}
(End)
		

Crossrefs

Cf. A061095 (same but with labeled boxes), A005225, A236696, A055225, A262280, A262320.
Column k=1 of A208437.
Row sums of A200472 and A200473.
Cf. A000110, A007837 (different lengths), A035470 (equal sums), A275780, A317583, A320324, A322794, A326512 (equal averages), A326513.

Programs

  • Maple
    A038041 := proc(n) local d;
    add(n!/(d!*(n/d)!^d), d = numtheory[divisors](n)) end:
    seq(A038041(n),n = 1..29); # Peter Luschny, Apr 16 2011
  • Mathematica
    a[n_] := Block[{d = Divisors@ n}, Plus @@ (n!/(#! (n/#)!^#) & /@ d)]; Array[a, 29] (* Robert G. Wilson v, Apr 16 2011 *)
    Table[Sum[n!/((n/d)!*(d!)^(n/d)), {d, Divisors[n]}], {n, 1, 31}] (* Emanuele Munarini, Jan 30 2014 *)
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],SameQ@@Length/@#&]],{n,0,8}] (* Gus Wiseman, Jul 12 2019 *)
  • Maxima
    a(n):= lsum(n!/((n/d)!*(d!)^(n/d)),d,listify(divisors(n)));
    makelist(a(n),n,1,40); /* Emanuele Munarini, Feb 03 2014 */
    
  • PARI
    /* compare to A061095 */
    mnom(v)=
    /* Multinomial coefficient s! / prod(j=1, n, v[j]!) where
      s= sum(j=1, n, v[j]) and n is the number of elements in v[]. */
    sum(j=1, #v, v[j])! / prod(j=1, #v, v[j]!)
    A038041(n)={local(r=0);fordiv(n,d,r+=mnom(vector(d,j,n/d))/d!);return(r);}
    vector(33,n,A038041(n)) /* Joerg Arndt, Apr 16 2011 */
    
  • Python
    import math
    def a(n):
        count = 0
        for k in range(1, n + 1):
            if n % k == 0:
                count += math.factorial(n) // (math.factorial(k) ** (n // k) * math.factorial(n // k))
        return count # Paul Muljadi, Sep 25 2024

Formula

a(n) = Sum_{d divides n} (n!/(d!*((n/d)!)^d)).
E.g.f.: Sum_{k >= 1} (exp(x^k/k!)-1).

Extensions

More terms from Erich Friedman

A035470 Number of ways to break {1,2,3,...,n} into sets with equal sums.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 6, 12, 11, 2, 80, 166, 2, 665, 2918, 3309, 9296, 23730, 31875, 301030, 422897, 2, 13716867, 71504980, 100664385, 54148591, 880696662, 498017759, 27450476787, 111911522819, 179459955554, 2144502175214, 59115423983, 45837019664552, 375743493787258, 816118711787493, 2, 9492169507922
Offset: 1

Views

Author

Keywords

Comments

a(n) = 2 <=> |{d|n*(n+1)/2 : d>=n}| = 2. - Alois P. Heinz, Sep 03 2009

Examples

			a(7) = 6 since we have 1234567, 16/25/34/7, 167/2345, 257/1346, 347/1256, 356/1247.
From _Gus Wiseman_, Jul 13 2019: (Start)
The a(6) = 2 through a(9) = 11 set partitions with equal block-sums:
  {123456}      {1234567}        {12345678}        {123456789}
  {16}{25}{34}  {1247}{356}      {12348}{567}      {12345}{69}{78}
                {1256}{347}      {12357}{468}      {1239}{456}{78}
                {1346}{257}      {12456}{378}      {1248}{357}{69}
                {167}{2345}      {1278}{3456}      {1257}{348}{69}
                {16}{25}{34}{7}  {1368}{2457}      {1347}{258}{69}
                                 {1458}{2367}      {1356}{249}{78}
                                 {1467}{2358}      {159}{2346}{78}
                                 {1236}{48}{57}    {159}{267}{348}
                                 {138}{246}{57}    {168}{249}{357}
                                 {156}{237}{48}    {18}{27}{36}{45}{9}
                                 {18}{27}{36}{45}
(End)
		

Crossrefs

Programs

  • Maple
    with(numtheory): b:= proc() option remember; local i, j, t; `if`(args[1]=0, `if`(nargs=2, 1, b(args[t] $t=2..nargs)), add(`if`(args[j] -args[nargs] <0, 0, b(sort([seq(args[i] -`if`(i=j, args[nargs], 0), i=1..nargs-1)])[], args[nargs]-1)), j=1..nargs-1)) end: a:= proc(n) local i, m, x; m:= n*(n+1)/2; 1+ add(b(i$(m/i), n)/(m/i)!, i=[select(x-> x>=n, divisors(m) minus {m})[]]) end: seq(a(n), n=1..25);  # Alois P. Heinz, Sep 03 2009
  • Mathematica
    b[args_List] := b[args] = If[args[[1]] == 0, If[Length[args] == 2, 1, b[Rest[args]]], Sum[If[args[[j]] - args[[-1]] < 0, 0, b[Sort[Join[Table[ args[[i]] - If[i == j, args[[-1]], 0], {i, 1, Length[args]-1}]]], {args[[-1]]-1}]], {j, 1, Length[args]-1}]]; b[a1_List, a2_List] := b[Join[a1, a2]];
    a[n_] := a[n] = With[{m = n*(n+1)/2}, 1+Sum[b[Append[Array[i&, m/i], n]] / (m/i)!, {i, Select[Divisors[m] ~Complement~ {m}, # >= n &]}]];
    Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 25}] (* Jean-François Alcover, Mar 22 2017, after Alois P. Heinz *)
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],SameQ@@Total/@#&]],{n,0,10}] (* Gus Wiseman, Jul 13 2019 *)

Extensions

More terms from John W. Layman, Mar 18 2002
a(19)-a(33) from Alois P. Heinz, Sep 03 2009
a(34) from Alois P. Heinz, May 24 2015
a(35)-a(38) from Max Alekseyev, Feb 15 2024

A275780 Number of set partitions of [n] into blocks with distinct element sums.

Original entry on oeis.org

1, 1, 2, 4, 12, 43, 160, 668, 3098, 15465, 83100, 477651, 2914505, 18795814, 127790544, 911448954, 6808162094, 53067398065, 430956571977, 3636314065247, 31841519540324, 288664242344692, 2706949104147162, 26205222185730884, 261681461422075548, 2691088457402830312
Offset: 0

Views

Author

Alois P. Heinz, Aug 08 2016

Keywords

Examples

			a(3) = 4: 123, 13|2, 1|23, 1|2|3.
a(4) = 12: 1234, 123|4, 124|3, 12|34, 134|2, 13|24, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],UnsameQ@@Total/@#&]],{n,0,10}] (* Gus Wiseman, Jul 13 2019 *)

Formula

a(n) = A000110(n) - A275781(n).

Extensions

a(17)-a(25) from Christian Sievers, Aug 20 2024

A047653 Constant term in expansion of (1/2) * Product_{k=-n..n} (1 + x^k).

Original entry on oeis.org

1, 2, 4, 10, 26, 76, 236, 760, 2522, 8556, 29504, 103130, 364548, 1300820, 4679472, 16952162, 61790442, 226451036, 833918840, 3084255128, 11451630044, 42669225172, 159497648600, 597950875256, 2247724108772, 8470205600640, 31991616634296, 121086752349064
Offset: 0

Views

Author

Keywords

Comments

Or, constant term in expansion of Product_{k=1..n} (x^k + 1/x^k)^2. - N. J. A. Sloane, Jul 09 2008
Or, maximal coefficient of the polynomial (1+x)^2 * (1+x^2)^2 *...* (1+x^n)^2.
a(n) = A000302(n) - A181765(n).
From Gus Wiseman, Apr 18 2023: (Start)
Also the number of subsets of {1..2n} that are empty or have mean n. The a(0) = 1 through a(3) = 10 subsets are:
{} {} {} {}
{1} {2} {3}
{1,3} {1,5}
{1,2,3} {2,4}
{1,2,6}
{1,3,5}
{2,3,4}
{1,2,3,6}
{1,2,4,5}
{1,2,3,4,5}
Also the number of subsets of {-n..n} with no 0's but with sum 0. The a(0) = 1 through a(3) = 10 subsets are:
{} {} {} {}
{-1,1} {-1,1} {-1,1}
{-2,2} {-2,2}
{-2,-1,1,2} {-3,3}
{-3,1,2}
{-2,-1,3}
{-2,-1,1,2}
{-3,-1,1,3}
{-3,-2,2,3}
{-3,-2,-1,1,2,3}
(End)

Crossrefs

Cf. A025591.
Cf. A053632; variant: A127728.
For median instead of mean we have A079309(n) + 1.
Odd bisection of A133406.
A000980 counts nonempty subsets of {1..2n-1} with mean n.
A007318 counts subsets by length, A327481 by mean.

Programs

  • Maple
    f:=n->coeff( expand( mul((x^k+1/x^k)^2,k=1..n) ),x,0);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0,
          `if`(i=0, 1, 2*b(n, i-1)+b(n+i, i-1)+b(abs(n-i), i-1)))
        end:
    a:=n-> b(0, n):
    seq(a(n), n=0..40);  # Alois P. Heinz, Mar 10 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n>i*(i+1)/2, 0, If[i == 0, 1, 2*b[n, i-1]+b[n+i, i-1]+b[Abs[n-i], i-1]]]; a[n_] := b[0, n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)
    nmax = 26; d = {1}; a1 = {};
    Do[
      i = Ceiling[Length[d]/2];
      AppendTo[a1, If[i > Length[d], 0, d[[i]]]];
      d = PadLeft[d, Length[d] + 2 n] + PadRight[d, Length[d] + 2 n] +
        2 PadLeft[PadRight[d, Length[d] + n], Length[d] + 2 n];
    , {n, nmax}];
    a1 (* Ray Chandler, Mar 15 2014 *)
    Table[Length[Select[Subsets[Range[2n]],Length[#]==0||Mean[#]==n&]],{n,0,6}] (* Gus Wiseman, Apr 18 2023 *)
  • PARI
    a(n)=polcoeff(prod(k=-n,n,1+x^k),0)/2
    
  • PARI
    {a(n)=sum(k=0,n*(n+1)/2,polcoeff(prod(m=1,n,1+x^m+x*O(x^k)),k)^2)} \\ Paul D. Hanna, Nov 30 2010

Formula

Sum of squares of coefficients in Product_{k=1..n} (1+x^k):
a(n) = Sum_{k=0..n(n+1)/2} A053632(n,k)^2. - Paul D. Hanna, Nov 30 2010
a(n) = A000980(n)/2.
a(n) ~ sqrt(3) * 4^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 11 2014
From Gus Wiseman, Apr 18 2023 (Start)
a(n) = A133406(2n+1).
a(n) = A212352(n) + 1.
a(n) = A362046(2n) + 1.
(End)

Extensions

More terms from Michael Somos, Jun 10 2000

A326512 Number of set partitions of {1..n} where every block has the same average.

Original entry on oeis.org

1, 1, 1, 2, 2, 5, 5, 18, 16, 75, 64, 405, 302, 2581, 1693, 19872, 11295, 175807, 87524, 1851135, 787515, 21909766, 8185713, 298698113, 96514608, 4538610230, 1285072142
Offset: 0

Views

Author

Gus Wiseman, Jul 11 2019

Keywords

Comments

The common average is necessarily (n+1)/2. The number of blocks with this average is given by A070925. - Christian Sievers, Aug 22 2024

Examples

			The a(1) = 1 through a(7) = 18 set partitions:
  {1}  {12}  {123}    {1234}    {12345}      {123456}      {1234567}
             {13}{2}  {14}{23}  {1245}{3}    {1256}{34}    {123567}{4}
                                {135}{24}    {1346}{25}    {12467}{35}
                                {15}{234}    {16}{2345}    {1267}{345}
                                {15}{24}{3}  {16}{25}{34}  {13457}{26}
                                                           {1357}{246}
                                                           {1456}{237}
                                                           {147}{2356}
                                                           {156}{2347}
                                                           {17}{23456}
                                                           {1267}{35}{4}
                                                           {1357}{26}{4}
                                                           {147}{26}{35}
                                                           {156}{237}{4}
                                                           {17}{2356}{4}
                                                           {17}{246}{35}
                                                           {17}{26}{345}
                                                           {17}{26}{35}{4}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],SameQ@@Mean/@#&]],{n,0,8}]

Extensions

a(12)-a(15) from Alois P. Heinz, Jul 12 2019
a(16)-a(26) from Christian Sievers, Aug 22 2024

A326516 Number of factorizations of n into factors > 1 where each factor has a different average of prime indices.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 4, 1, 1, 2, 2, 2, 5, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 8, 1, 2, 3, 1, 2, 5, 1, 3, 2, 5, 1, 8, 1, 2, 3, 3, 2, 5, 1, 5, 1, 2, 1, 8, 2, 2, 2, 4, 1, 7, 2, 3, 2, 2, 2, 6, 1, 3, 3, 5, 1, 5, 1, 4, 4
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(60) = 8 factorizations: (2*5*6), (3*4*5), (2*30), (3*20), (4*15), (5*12), (6*10), (60).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],UnsameQ@@Mean/@primeMS/@#&]],{n,100}]
  • PARI
    avgpis(n) = { my(f=factor(n)); f[,1] = apply(primepi,f[,1]); (1/bigomega(n))*sum(i=1,#f~,f[i,2]*f[i,1]); };
    all_have_different_average_of_pis(facs) = if(!#facs, 1, (#Set(apply(avgpis,facs)) == #facs));
    A326516(n, m=n, facs=List([])) = if(1==n, all_have_different_average_of_pis(facs), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A326516(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 20 2025

A326537 MM-numbers of multiset partitions where each part has a different average.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 51, 53, 55, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 106, 107, 109, 110
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2019

Keywords

Comments

These are numbers where each prime index has a different average of prime indices. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of multiset partitions where each part has a different average, preceded by their MM-numbers, begins:
   1: {}
   2: {{}}
   3: {{1}}
   5: {{2}}
   6: {{},{1}}
   7: {{1,1}}
  10: {{},{2}}
  11: {{3}}
  13: {{1,2}}
  14: {{},{1,1}}
  15: {{1},{2}}
  17: {{4}}
  19: {{1,1,1}}
  22: {{},{3}}
  23: {{2,2}}
  26: {{},{1,2}}
  29: {{1,3}}
  30: {{},{1},{2}}
  31: {{5}}
  33: {{1},{3}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],UnsameQ@@Mean/@primeMS/@primeMS[#]&]

A326521 Number of normal multiset partitions of weight n where each part has a different average.

Original entry on oeis.org

1, 1, 3, 11, 49, 251, 1418, 8904
Offset: 0

Views

Author

Gus Wiseman, Jul 12 2019

Keywords

Comments

A multiset partition is normal if it covers an initial interval of positive integers.

Examples

			The a(0) = 1 through a(3) = 11 normal multiset partitions where each part has a different average:
  {}  {{1}}  {{1,1}}    {{1,1,1}}
             {{1,2}}    {{1,1,2}}
             {{1},{2}}  {{1,2,2}}
                        {{1,2,3}}
                        {{1},{1,2}}
                        {{1},{2,2}}
                        {{1},{2,3}}
                        {{2},{1,1}}
                        {{2},{1,2}}
                        {{3},{1,2}}
                        {{1},{2},{3}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@mps/@allnorm[n],UnsameQ@@Mean/@#&]],{n,0,5}]

A070925 Number of subsets of A = {1,2,...,n} that have the same center of gravity as A, i.e., (n+1)/2.

Original entry on oeis.org

1, 1, 3, 3, 7, 7, 19, 17, 51, 47, 151, 137, 471, 427, 1519, 1391, 5043, 4651, 17111, 15883, 59007, 55123, 206259, 193723, 729095, 688007, 2601639, 2465133, 9358943, 8899699, 33904323, 32342235, 123580883, 118215779, 452902071, 434314137, 1667837679, 1602935103
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 20 2002

Keywords

Comments

From Gus Wiseman, Apr 15 2023: (Start)
Also the number of nonempty subsets of {0..n} with mean n/2. The a(0) = 1 through a(5) = 7 subsets are:
{0} {0,1} {1} {0,3} {2} {0,5}
{0,2} {1,2} {0,4} {1,4}
{0,1,2} {0,1,2,3} {1,3} {2,3}
{0,2,4} {0,1,4,5}
{1,2,3} {0,2,3,5}
{0,1,3,4} {1,2,3,4}
{0,1,2,3,4} {0,1,2,3,4,5}
(End)

Examples

			Of the 32 (2^5) sets which can be constructed from the set A = {1,2,3,4,5} only the sets {3}, {2, 3, 4}, {2, 4}, {1, 2, 4, 5}, {1, 2, 3, 4, 5}, {1, 3, 5}, {1, 5} give an average of 3.
		

Crossrefs

The odd bisection is A000980(n) - 1 = 2*A047653(n) - 1.
For median instead of mean we have A100066, bisection A006134.
Including the empty set gives A222955.
The one-based version is A362046, even bisection A047653(n) - 1.
A007318 counts subsets by length.
A067538 counts partitions with integer mean, strict A102627.
A231147 counts subsets by median.
A327481 counts subsets by integer mean.

Programs

  • Mathematica
    Needs["DiscreteMath`Combinatorica`"]; f[n_] := Block[{s = Subsets[n], c = 0, k = 2}, While[k < 2^n + 1, If[ (Plus @@ s[[k]]) / Length[s[[k]]] == (n + 1)/2, c++ ]; k++ ]; c]; Table[ f[n], {n, 1, 20}]
    (* second program *)
    Table[Length[Select[Subsets[Range[0,n]],Mean[#]==n/2&]],{n,0,10}] (* Gus Wiseman, Apr 15 2023 *)

Formula

From Gus Wiseman, Apr 18 2023: (Start)
a(2n+1) = A000980(n) - 1.
a(n) = A222955(n) - 1.
a(n) = 2*A362046(n) + 1.
(End)

Extensions

Edited by Robert G. Wilson v and John W. Layman, May 25 2002
a(34)-a(38) from Fausto A. C. Cariboni, Oct 08 2020

A361864 Number of set partitions of {1..n} whose block-medians have integer median.

Original entry on oeis.org

1, 0, 3, 6, 30, 96, 461, 2000, 10727, 57092, 342348
Offset: 1

Views

Author

Gus Wiseman, Apr 04 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(1) = 1 through a(4) = 6 set partitions:
  {{1}}  .  {{123}}      {{1}{234}}
            {{13}{2}}    {{123}{4}}
            {{1}{2}{3}}  {{1}{2}{34}}
                         {{12}{3}{4}}
                         {{1}{24}{3}}
                         {{13}{2}{4}}
The set partition {{1,2},{3},{4}} has block-medians {3/2,3,4}, with median 3, so is counted under a(4).
		

Crossrefs

For mean instead of median we have A361865.
For sum instead of outer median we have A361911, means A361866.
A000110 counts set partitions.
A000975 counts subsets with integer median, mean A327475.
A013580 appears to count subsets by median, A327481 by mean.
A308037 counts set partitions with integer average block-size.
A325347 counts partitions w/ integer median, complement A307683.
A360005 gives twice median of prime indices, distinct A360457.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],IntegerQ[Median[Median/@#]]&]],{n,6}]
Showing 1-10 of 16 results. Next