A361864
Number of set partitions of {1..n} whose block-medians have integer median.
Original entry on oeis.org
1, 0, 3, 6, 30, 96, 461, 2000, 10727, 57092, 342348
Offset: 1
The a(1) = 1 through a(4) = 6 set partitions:
{{1}} . {{123}} {{1}{234}}
{{13}{2}} {{123}{4}}
{{1}{2}{3}} {{1}{2}{34}}
{{12}{3}{4}}
{{1}{24}{3}}
{{13}{2}{4}}
The set partition {{1,2},{3},{4}} has block-medians {3/2,3,4}, with median 3, so is counted under a(4).
For mean instead of median we have
A361865.
A308037 counts set partitions with integer average block-size.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
Table[Length[Select[sps[Range[n]],IntegerQ[Median[Median/@#]]&]],{n,6}]
A361866
Number of set partitions of {1..n} with block-means summing to an integer.
Original entry on oeis.org
1, 1, 1, 3, 8, 22, 75, 267, 1119, 4965, 22694, 117090, 670621, 3866503, 24113829, 161085223, 1120025702, 8121648620, 62083083115, 492273775141, 4074919882483
Offset: 0
The a(1) = 1 through a(4) = 8 set partitions:
{{1}} {{1}{2}} {{123}} {{1}{234}}
{{13}{2}} {{12}{34}}
{{1}{2}{3}} {{123}{4}}
{{13}{24}}
{{14}{23}}
{{1}{24}{3}}
{{13}{2}{4}}
{{1}{2}{3}{4}}
The set partition y = {{1,2},{3,4}} has block-means {3/2,7/2}, with sum 5, so y is counted under a(4).
For median instead of mean we have
A361911.
A308037 counts set partitions with integer mean block-size.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
Table[Length[Select[sps[Range[n]],IntegerQ[Total[Mean/@#]]&]],{n,6}]
A361911
Number of set partitions of {1..n} with block-medians summing to an integer.
Original entry on oeis.org
1, 1, 3, 10, 30, 107, 479, 2249, 11173, 60144, 351086, 2171087, 14138253, 97097101, 701820663, 5303701310, 41838047938, 343716647215, 2935346815495, 25999729551523, 238473713427285, 2261375071834708, 22141326012712122, 223519686318676559, 2323959300370456901
Offset: 1
The a(1) = 1 through a(4) = 10 set partitions:
{{1}} {{1}{2}} {{123}} {{1}{234}}
{{13}{2}} {{12}{34}}
{{1}{2}{3}} {{123}{4}}
{{124}{3}}
{{13}{24}}
{{134}{2}}
{{14}{23}}
{{1}{24}{3}}
{{13}{2}{4}}
{{1}{2}{3}{4}}
The set partition {{1,4},{2,3}} has medians {5/2,5/2}, with sum 5, so is counted under a(4).
For median instead of sum we have
A361864.
For mean instead of median we have
A361866.
A308037 counts set partitions with integer average block-size.
-
sps[{}]:={{}}; sps[set:{i_,_}] := Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]] /@ Cases[Subsets[set],{i,_}];
Table[Length[Select[sps[Range[n]], IntegerQ[Total[Median/@#]]&]],{n,10}]
A361910
Number of set partitions of {1..n} such that the mean of the means of the blocks is (n+1)/2.
Original entry on oeis.org
1, 2, 3, 7, 12, 47, 99, 430, 1379, 5613, 21416, 127303, 532201, 3133846, 18776715, 114275757, 737859014
Offset: 1
The a(1) = 1 through a(5) = 12 set partitions:
{{1}} {{12}} {{123}} {{1234}} {{12345}}
{{1}{2}} {{13}{2}} {{12}{34}} {{1245}{3}}
{{1}{2}{3}} {{13}{24}} {{135}{24}}
{{14}{23}} {{15}{234}}
{{1}{23}{4}} {{1}{234}{5}}
{{14}{2}{3}} {{12}{3}{45}}
{{1}{2}{3}{4}} {{135}{2}{4}}
{{14}{25}{3}}
{{15}{24}{3}}
{{1}{24}{3}{5}}
{{15}{2}{3}{4}}
{{1}{2}{3}{4}{5}}
The set partition {{1,3},{2,4}} has means {2,3}, with mean 5/2, so is counted under a(4).
The set partition {{1,3,5},{2,4}} has means {3,3}, with mean 3, so is counted under a(5).
For median instead of mean we have
A361863.
A308037 counts set partitions with integer mean block-size.
A327475 counts subsets with integer mean,
A000975 with integer median.
A361865 counts set partitions with integer mean of means.
A361911 counts set partitions with integer sum of means.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]] /@ Cases[Subsets[set],{i,_}];
Table[Length[Select[sps[Range[n]],Mean[Join@@#]==Mean[Mean/@#]&]],{n,8}]
A361863
Number of set partitions of {1..n} such that the median of medians of the blocks is (n+1)/2.
Original entry on oeis.org
1, 2, 3, 9, 26, 69, 335, 1018, 6629, 22805, 182988, 703745
Offset: 1
The a(1) = 1 through a(4) = 9 set partitions:
{{1}} {{12}} {{123}} {{1234}}
{{1}{2}} {{13}{2}} {{12}{34}}
{{1}{2}{3}} {{124}{3}}
{{13}{24}}
{{134}{2}}
{{14}{23}}
{{1}{23}{4}}
{{14}{2}{3}}
{{1}{2}{3}{4}}
The set partition {{1,4},{2,3}} has medians {5/2,5/2}, with median 5/2, so is counted under a(4).
The set partition {{1,3},{2,4}} has medians {2,3}, with median 5/2, so is counted under a(4).
For mean instead of median we have
A361910.
A361864 counts set partitions with integer median of medians, means
A361865.
A361866 counts set partitions with integer sum of medians, means
A361911.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
Table[Length[Select[sps[Range[n]],(n+1)/2==Median[Median/@#]&]],{n,6}]
Showing 1-5 of 5 results.
Comments