cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-39 of 39 results.

A125038 Primes of the form 34k+1 generated recursively. Initial prime is 103. General term is a(n) = Min {p is prime; p divides (R^17 - 1)/(R - 1); p == 1 (mod 17)}, where Q is the product of previous terms in the sequence and R = 17*Q.

Original entry on oeis.org

103, 307, 9929, 187095201191, 76943, 37061, 137, 5615258941637, 302125531, 18089, 613, 409, 9419, 193189
Offset: 1

Views

Author

Nick Hobson, Nov 18 2006

Keywords

Comments

All prime divisors of (R^17 - 1)/(R - 1) different from 17 are congruent to 1 modulo 34.

Examples

			a(2) = 307 is the smallest prime divisor congruent to 1 mod 34 of (R^17 - 1)/(R-1) = 7813154903878257490980895975711871949096304270238017 = 307 * 326669135226428664734261 * 77907623430368753779713071, where Q = 103 and R = 17*Q.
		

References

  • M. Ram Murty, Problems in Analytic Number Theory, Springer-Verlag, NY, (2001), pp. 208-209.

Crossrefs

Programs

  • Mathematica
    a={103}; q=1;
    For[n=2,n<=5,n++,
        q=q*Last[a]; r=17*q;
        AppendTo[a,Min[Select[FactorInteger[(r^17-1)/(r-1)][[All,1]],Mod[#,34]==1 &]]];
        ];
    a (* Robert Price, Jul 14 2015 *)

Extensions

a(9)-a(14) from Sean A. Irvine, Jun 27 2011

A125040 Primes of the form 16k+1 generated recursively. Initial prime is 17. General term is a(n)=Min {p is prime; p divides (2Q)^8 + 1}, where Q is the product of previous terms in the sequence.

Original entry on oeis.org

17, 47441, 5136468762577, 1217, 2413992194819190142614641, 113, 52654897, 241, 5310928841473, 673
Offset: 1

Views

Author

Nick Hobson, Nov 18 2006

Keywords

Comments

All prime divisors of (2Q)^8 + 1 are congruent to 1 modulo 16.

Examples

			a(3) = 5136468762577 is the smallest prime divisor of (2Q)^8 + 1 = 45820731194492299767895461612240999140120699535617 = 5136468762577 * 33000748370307713 * 270317134666005456817, where Q = 17 * 47441.
		

References

  • G. A. Jones and J. M. Jones, Elementary Number Theory, Springer-Verlag, NY, (1998), p. 271.

Crossrefs

Programs

  • Mathematica
    a = {17}; q = 1;
    For[n = 2, n <= 3, n++,
        q = q*Last[a];
        AppendTo[a, Min[Select[FactorInteger[(2*q)^8 + 1][[All, 1]],
        Mod[#, 16] == 1 &]]];
        ];
    a (* Robert Price, Jul 14 2015 *)

Extensions

a(5)-a(10) from Max Alekseyev, Oct 18 2008

A125041 Primes of the form 24k+17 generated recursively. Initial prime is 17. General term is a(n) = Min {p is prime; p divides (2Q)^4 + 1; p == 17 (mod 24)}, where Q is the product of previous terms in the sequence.

Original entry on oeis.org

17, 1336337, 4261668267710686591310687815697, 41, 904641301321079897900944986453955254215268639579197293450763646548520041534444726724543203327659858344185865089, 3449, 18701609, 8009, 38599161306788868932168755721, 857, 130073, 1433, 113, 809, 18954775793
Offset: 1

Views

Author

Nick Hobson, Nov 18 2006

Keywords

Comments

All prime divisors of (2Q)^4 + 1 are congruent to 1 modulo 8.
At least one prime divisor of (2Q)^4 + 1 is congruent to 2 modulo 3 and hence to 17 modulo 24.
The first four terms are the same as those of A125039.

Examples

			a(3) = 4261668267710686591310687815697 is the smallest prime divisor congruent to 17 mod 24 of (2Q)^4 + 1 = 4261668267710686591310687815697, where Q = 17 * 1336337.
		

References

  • G. A. Jones and J. M. Jones, Elementary Number Theory, Springer-Verlag, NY, (1998), p. 271.

Crossrefs

Extensions

More terms from Sean A. Irvine, Jun 09 2015

A094465 Least initial value for an Euclid/Mullin sequence whose 4th term is prime(n). prime(1)=2 is never a fourth term, so offset=2.

Original entry on oeis.org

5, 19, 43, 31, 67, 541, 193, 157, 1213, 811, 487, 2371, 2, 1543, 733, 1319, 1291, 1753, 1621, 2713, 13, 1231, 2833, 2053, 1801, 3313, 5011, 821, 2467, 5101, 3253, 8573, 3637, 1553, 15427, 5521, 3191, 9173, 7237, 10531, 11071, 6271, 9103, 15727, 7993
Offset: 2

Views

Author

Labos Elemer, May 10 2004

Keywords

Examples

			n=14: prime(14) = 43 and an Euclid-Mullin sequence started with a(14) = 2 = prime(1) is {2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139, ...} is A000945, the prototype EM-sequence.
n=7: a(7) = prime(100) = 541, with EM sequence as follows: {541, 2, 3, 17, 139, 7, 1871, 100457892907, 19, 11047, ...}, where the 4th term equals prime(n) = prime(7) = 17.
It is characteristic but not so simple congruence relations holds of term(1) mod term(4) form for various first or 4th primes, not necessarily smallest ones. See comment at A094464.
		

Crossrefs

Programs

  • Mathematica
    a[x_]:=First[Flatten[FactorInteger[Apply[Times, Table[a[j], {j, 1, x-1}]]+1]]]; ta=Table[0, {20000}];a[1]=1;Do[{a[1]=Prime[j], el=4}; ta[[j]]=a[el], {j, 1, 20000}] Table[Prime[Min[Flatten[Position[ta, Prime[w]]]]], {w, 1, 100}]

Formula

a(n) = Min_{k} A051614(k) = prime(n).

A124985 Primes of the form 8*k + 7 generated recursively. Initial prime is 7. General term is a(n) = Min_{p is prime; p divides 8*Q^2 - 1; p == 7 (mod 8)}, where Q is the product of the previous terms.

Original entry on oeis.org

7, 23, 207367, 1902391, 167, 1511, 28031, 79, 3142977463, 2473230126937097422987916357409859838765327, 2499581669222318172005765848188928913768594409919797075052820591, 223
Offset: 1

Views

Author

Nick Hobson, Nov 18 2006

Keywords

Comments

8*Q^2 - 1 always has a prime divisor congruent to 7 modulo 8.

Examples

			a(4) = 1902391 is the smallest prime divisor, congruent to 7 modulo 8, of 8*Q^2 - 1 = 8917046441372551 = 97 * 1902391 * 48322513, where Q = 7 * 23 * 207367.
		

References

  • D. M. Burton, Elementary Number Theory, McGraw-Hill, Sixth Edition (2007), p. 182.

Crossrefs

Programs

  • Mathematica
    a={7}; q=1;
    For[n=2,n<=9,n++,
        q=q*Last[a];
        AppendTo[a,Min[Select[FactorInteger[8*q^2-1][[All,1]],Mod[#,8]==7&]]];
        ];
    a (* Robert Price, Jul 18 2015 *)
  • PARI
    main(size)={my(v=vector(size),i,q=1,t);for(i=1,size,t=1;while(!(prime(t)%8==7&&(8*q^2-1)%prime(t)==0),t++);v[i]=prime(t);q*=v[i]);v;} /* Anders Hellström, Jul 18 2015 */

Extensions

Edited and added a(11)-a(12) by Max Alekseyev, May 31 2013

A124992 Primes of the form 14k+1 generated recursively. Initial prime is 29. General term is a(n)=Min {p is prime; p divides (R^7 - 1)/(R - 1); Mod[p,7]=1}, where Q is the product of previous terms in the sequence and R = 7Q.

Original entry on oeis.org

29, 70326806362093, 43, 127, 59221, 113, 32411, 71, 4957, 74509, 4271, 19013, 239, 2003, 463, 421, 613575503674084673, 32089, 211, 54601, 3109
Offset: 1

Views

Author

Nick Hobson, Nov 18 2006

Keywords

Comments

All prime divisors of (R^7 - 1)/(R - 1) different from 7 are congruent to 1 modulo 14.

Examples

			a(3) = 43 is the smallest prime divisor congruent to 1 mod 14 of (R^7 - 1)/(R-1) =
8466454975669959912248567627122565866080343755024168315838344565727361366925647440393797835238961
= 43 * 10781 * 391441 * 428597443 * 11795628769 * 408944901028399 * 22566921596365593811470735460776534824496318810581339, where Q = 29 * 70326806362093 and R = 7Q.
		

References

  • M. Ram Murty, Problems in Analytic Number Theory, Springer-Verlag, NY, (2001), pp. 208-209.

Crossrefs

Programs

  • Mathematica
    a={29}; q=1;
    For[n=2,n<=3,n++,
        q=q*Last[a]; r=7*q;
        AppendTo[a,Min[Select[FactorInteger[(r^7-1)/(r-1)][[All,1]],Mod[#,14]==1 &]]];
        ];
    a (* Robert Price, Jul 14 2015 *)

A125042 Primes of the form 48k+17 generated recursively. Initial prime is 17. General term is a(n)=Min {p is prime; p divides (2Q)^8 + 1; Mod[p,48]=17}, where Q is the product of previous terms in the sequence.

Original entry on oeis.org

17, 47441, 33000748370307713, 21377
Offset: 1

Views

Author

Nick Hobson, Nov 18 2006

Keywords

Comments

All prime divisors of (2Q)^8 + 1 are congruent to 1 modulo 16.
At least one prime divisor of (2Q)^8 + 1 is congruent to 2 modulo 3 and hence to 17 modulo 48.
The first two terms are the same as those of A125040.

Examples

			a(3) = 33000748370307713 is the smallest prime divisor congruent to 17 mod 48 of (2Q)^8 + 1 = 45820731194492299767895461612240999140120699535617 = 5136468762577 * 33000748370307713 * 270317134666005456817, where Q = 17 * 47441.
		

References

  • G. A. Jones and J. M. Jones, Elementary Number Theory, Springer-Verlag, NY, (1998), p. 271.

Crossrefs

Programs

  • Mathematica
    a = {17}; q = 1;
    For[n = 2, n ≤ 2, n++,
        q = q*Last[a];
        AppendTo[a, Min[Select[FactorInteger[(2*q)^8 + 1][[All, 1]],
        Mod[#, 48] \[Equal] 17 &]]];
        ];
    a (* Robert Price, Jul 14 2015 *)

A125043 Primes of the form 18k+1 generated recursively. Initial prime is 19. General term is a(n) = Min {p is prime; p divides (R^9 - 1)/(R^3 - 1); p == 1 (mod 9)}, where Q is the product of previous terms in the sequence and R = 3*Q.

Original entry on oeis.org

19, 20593, 163, 8321800321246060993879, 9002496685879, 9736549840211105800055992105260095004185761, 1117, 48871, 37, 109, 2072647, 811, 2647, 22934467, 73, 10715232331, 4861, 127, 883, 699733, 19918378819555761579853986597710971
Offset: 1

Views

Author

Nick Hobson, Nov 18 2006

Keywords

Comments

All prime divisors of (R^9 - 1)/(R^3 - 1) different from 3 are congruent to 1 modulo 18.

Examples

			a(3) = 163 is the smallest prime divisor congruent to 1 mod 18 of (R^9-1)/(R^3-1) = 2615573032645879161713714169238484203 = 163 * 88080931 * 161773561 * 1126133310262611691, where Q = 19 * 20593 and R = 3*Q.
		

References

  • M. Ram Murty, Problems in Analytic Number Theory, Springer-Verlag, NY, (2001), p. 209.

Crossrefs

Extensions

More terms from Sean A. Irvine, Feb 02 2012

A125044 Primes of the form 54k+1 generated recursively. Initial prime is 109. General term is a(n) = Min {p is prime; p divides (R^27 - 1)/(R^9 - 1); p == 1 (mod 27)}, where Q is the product of previous terms in the sequence and R = 3*Q.

Original entry on oeis.org

109, 50221, 379, 5077, 2527181639419400128997560106426867837203, 112807, 2094067, 1567, 9325207, 370603, 67447, 27978113462777647321591, 1012771, 163, 396577, 7096357, 3511, 3673, 541, 389287, 1999, 68979565009, 649108891
Offset: 1

Views

Author

Nick Hobson, Nov 18 2006

Keywords

Comments

All prime divisors of (R^27 - 1)/(R^9 - 1) different from 3 are congruent to 1 modulo 54.

Examples

			a(2) = 50221 is the smallest prime divisor congruent to 1 mod 54 of
  (R^27-1)/(R^9- 1) = 1827509098737085519727094436535854935801097657 = 50221 * 106219 * 342587871163695447795790279515751543, where Q = 109 and R = 3*Q.
		

References

  • M. Ram Murty, Problems in Analytic Number Theory, Springer-Verlag, NY, (2001), p. 209.

Crossrefs

Extensions

More terms from Sean A. Irvine, Dec 11 2011
Previous Showing 31-39 of 39 results.