cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A121755 Numerator of Sum/Product of first n primes = Numerator[ A007504[n] / A002110[n] ].

Original entry on oeis.org

1, 5, 1, 17, 2, 41, 29, 1, 10, 43, 16, 197, 1, 281, 4, 127, 4, 167, 284, 3, 356, 113, 1, 321, 2, 9, 8, 457, 4, 9, 4, 617, 2, 709, 1138, 809, 4, 1, 1, 147, 1, 1149, 1, 1277, 2, 1409, 317, 1, 4, 1, 5, 81, 1, 2027, 3169, 1, 1, 1, 3709, 7699, 307, 1655, 613, 8893, 4603, 1, 379, 1
Offset: 1

Views

Author

Alexander Adamchuk, Aug 19 2006

Keywords

Comments

Many a(n) are equal to 1. The indices n such that a(n) = 1 are listed in A051838[n] = {1,3,8,13,23,38,39,41,43,48,50,53,56,57,58,66,68,70,73,77,84,90,94,98,...}. Primes p such that a(p) = 1 are listed in A121756[n] = {3,13,23,41,43,53,73,149,151,157,167,191,229,269,293,373,521,557,569,607,691, 701,829,853,863,887,947,991,...}. Many a(n) are primes. It appears that all prime a(n) {5,17,2,41,29,43,197,281,127,167,3,113,457,617,709,809,1277,1409,317,2027,307,...} and all prime divisors of composite a(n) {2,5,71,89,3,107,569,7,383,331,457,...} belong to A111267[n].

Crossrefs

Programs

  • Mathematica
    Table[Numerator[Sum[Prime[k],{k,1,n}]/Product[Prime[k],{k,1,n}]],{n,1,100}]
    Module[{prs=Prime[Range[70]]},Flatten[Numerator[Thread[ {Accumulate[ prs]/ Rest[ FoldList[Times,1,prs]]}]]]] (* This is several hundred times faster than the first Mathematica program in generating 5000 terms of the sequence *) (* Harvey P. Dale, Dec 29 2012 *)

Formula

a(n) = Numerator[ Sum[ Prime[k], {k,1,n} ] / Product[ Prime[k], {k,1,n}] ]. a(n) = Numerator[ A007504[n] / A002110[n] ].

A159581 First divisors at which integral quotients occur consecutively in A116536 (and associated with A159580).

Original entry on oeis.org

2747, 6601, 75130, 133386, 148827, 208385, 255445, 799846, 814006, 890299, 993730, 1037571, 1049698, 1382738, 1723170, 1869711, 2168747, 2530165, 2569285, 2615298, 2838135, 2963531, 3020151, 3434151, 3510885, 3627674, 3706710, 3941521, 3999326, 4434411, 4700809, 5887533, 6133305
Offset: 1

Views

Author

Enoch Haga, Apr 16 2009

Keywords

Examples

			The first run of consecutive integers in A051838 is A051838(6)=38 and A051838(7)=39, therefore a(1) = A140763(6)= 2747.
The second run of consecutive integers in A051838 is A051838(13)=56, A051838(14)= 57, A051838(15)=58, therefore a(2) = A140763(13) = 6601.
		

Crossrefs

Extensions

Recomputed by R. J. Mathar, Aug 28 2018

A121756 Primes p such that sum of first p primes divides product of first p primes.

Original entry on oeis.org

3, 13, 23, 41, 43, 53, 73, 149, 151, 157, 167, 191, 229, 269, 293, 373, 521, 557, 569, 607, 691, 701, 829, 853, 863, 887, 947, 991, 1019, 1033, 1039, 1051, 1087, 1091, 1303, 1321, 1367, 1429, 1483, 1493, 1543, 1667, 1697, 1709, 1723, 1733, 1777, 1811, 1831
Offset: 1

Views

Author

Alexander Adamchuk, Aug 19 2006

Keywords

Comments

All a(n) belong to A051838[n] = {1,3,8,13,23,38,39,41,43,48,50,53,56,57,...} Sum of first n primes divides product of first n primes.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[300]],IntegerQ[Product[Prime[k],{k,1,#1}]/Sum[Prime[k],{k,1,#1}]]&]

A259643 Numbers n such that sum of first n odd primes divides product of first n odd primes.

Original entry on oeis.org

1, 3, 5, 11, 25, 29, 41, 49, 51, 59, 69, 81, 99, 103, 113, 131, 133, 135, 147, 149, 153, 181, 187, 193, 197, 199, 205, 211, 213, 217, 219, 229, 235, 239, 243, 255, 271, 277, 281, 287, 289, 303, 309, 313, 323, 333, 335, 343, 347, 357, 359, 365, 367, 381, 383, 389
Offset: 1

Views

Author

Altug Alkan, Oct 02 2015

Keywords

Comments

Obviously, a(n) is always an odd number.

Examples

			a(1) = 1 because prime(2) mod prime(2) = 3 mod 3 = 0.
a(2) = 3 because (prime(2) * prime(3) * prime(4)) mod (prime(2) + prime(3) + prime(4)) = 105 mod 15 = 0.
a(3) = 5 because (prime(2) * prime(3) * prime(4) * prime(5) * prime(6)) mod (prime(2) + prime(3) + prime(4) + prime(5) + prime(6)) = 15015 mod 39 = 0.
		

Crossrefs

Programs

  • Mathematica
    Module[{nn=400,op},op=Prime[Range[2,nn+1]];Select[Range[nn],Divisible[ Times@@ Take[op,#],Total[Take[op,#]]]&]] (* Harvey P. Dale, Nov 16 2022 *)

A118219 Smallest number k>1 such that Sum_{i=1..k} Prime[i]^n divides Product_{i=1..k} Prime[i]^n.

Original entry on oeis.org

3, 30, 17, 248, 515, 49682
Offset: 1

Views

Author

Alexander Adamchuk, Feb 24 2007

Keywords

Comments

a(7)>991430. - Robert G. Wilson v, Mar 02 2007

Examples

			a(1) = 3 because 2 + 3 + 5 = 10 divides 2*3*5 = 30 but 2 + 3 = 5 does not divide 2*3 = 6.
		

Crossrefs

Cf. A051838 = Sum of first n primes divides product of first n primes. Cf. A125314 = Smallest number k>1 such that Sum_{i=1..k} i^n divides Product_{i=1..k} i^n. Cf. A007504, A002110, A024450, A098999, A122102, A122103.

Programs

  • Mathematica
    f[n_] := Block[{k = 2, p = 2, s = 2^n}, While[p = p*Prime@ k; s = s + Prime@ k^n; PowerMod[p, n, s] != 0, k++ ]; k]; Do[ Print@ f@n, {n, 10}] (* Robert G. Wilson v *)

Extensions

a(6) from Robert G. Wilson v, Mar 02 2007

A264897 Integers n such that A002110(n) is divisible by A098999(n).

Original entry on oeis.org

138, 163, 873, 1054, 1079, 1604, 1825, 1990, 2079, 2493, 2509, 2810, 2950, 3494, 3800, 3910, 4300, 4462, 4470, 4564, 4593, 4957, 5140, 5450, 5558, 5572, 5581, 5834, 6391, 6792, 6969, 7444, 7892, 8321, 8530, 8581, 9254, 9299, 9522, 9832, 9847, 10082, 10850
Offset: 1

Views

Author

Altug Alkan, Nov 27 2015

Keywords

Comments

A002110(138) has 327 digits.
What is the minimum value of a(n) - a(n-1)?

Crossrefs

Programs

  • Mathematica
    Select[Range@ 10000, Divisible[Product[Prime@ k, {k, #}], Sum[Prime[k]^3, {k, #}]] &] (* Michael De Vlieger, Nov 28 2015 *)
  • PARI
    for(n=1, 11000, if(prod(k=1, n, prime(k)) % sum(k=1, n, prime(k)^3) == 0, print1(n, ", ")))

A318171 Least prime p such that Sum_{q prime <= p} q is divisible by the first n primes.

Original entry on oeis.org

2, 269, 269, 3823, 8539, 729551, 1416329, 23592593, 1478674861, 20458458289, 7558026467353, 201008815538749
Offset: 1

Views

Author

Amiram Eldar, Aug 20 2018

Keywords

Comments

a(1)-a(9) are taken from De Koninck's book.
The sequence of indices of these primes is 1, 57, 57, 531, 1065, 58751, 108243, 1483151, 73716417, 901526695, 264119914199, 6301058125383.

Examples

			2 + 3 + ... + 269 = 2 * 3 * 1145
2 + 3 + ... + 269 = 2 * 3 * 5 * 229
2 + 3 + ... + 3823 = 2 * 3 * 5 * 7 * 4473
2 + 3 + ... + 8539 = 2 * 3 * ... * 11 * 1826
2 + 3 + ... + 729551 = 2 * 3 * ... * 13 * 682263
2 + 3 + ... + 1416329 = 2 * 3 * ... * 17 * 143884
2 + 3 + ... + 23592593 = 2 * 3 * ... * 19 * 1742804
2 + 3 + ... + 1478674861 = 2 * 3 * ... * 23 * 237859969
2 + 3 + ... + 20458458289 = 2 * 3 * ... * 29 * 1392427664
2 + 3 + ... + 7558026467353 = 2 * 3 * ... * 31 * 4886311486119
2 + 3 + ... + 201008815538749 = 2 * 3 * ... * 37 * 83956482342243
		

References

  • Jean-Marie De Koninck, Those Fascinating Numbers, Amer. Math. Soc., 2009, p. 66.

Crossrefs

Cf. A051838.

Programs

  • Mathematica
    c=0; pr=2; p=2; s=2; q=2; While[c<6, While[!Divisible[s, pr], q = NextPrime[q]; s+=q]; Print[ q]; c++; p = NextPrime[p]; pr*=p]
  • PARI
    my(c=0, pr=2, p=2, s=2, q=2); while(c<6, while(s%pr!=0, q = nextprime(q+1); s+=q); print1(q,", "); c++; p = nextprime(p+1); pr*=p)

Extensions

a(11) from Giovanni Resta, Aug 20 2018
a(12) from Giovanni Resta, Aug 22 2018

A340534 a(n) is the least product of n consecutive primes that is divisible by the sum of those primes, or 0 if there is no such product.

Original entry on oeis.org

2, 0, 30, 0, 15015, 0, 37182145, 9699690, 33426748355, 0, 3710369067405, 0, 304250263527210, 0, 37420578814667938361329, 0, 18598027670889965365580513, 0, 107254825578022430263302818471, 0, 44510752614879308559270669665465, 0, 267064515689275851355624017992790, 0, 116431182179248680450031658440253681535, 0
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jan 10 2021

Keywords

Comments

a(27) > 10^225 if it is not 0.
If n is even, a(n) is either A002110(n) or 0.
a(n) = A002110(n) for n in A051838.

Examples

			a(5) = 15015 = 3*5*7*11*13 is the product of 5 consecutive primes and is divisible by 3+5+7+11+13 = 39.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local L,i,p;
       L:= [seq(ithprime(i),i=1..n)]:
       p:= convert(L,`*`);
       if n::even then
         if p mod convert(L,`+`) = 0 then return p else return 0 fi
       else
         do
           p:= convert(L,`*`);
           if p mod convert(L,`+`) = 0 then return p fi;
           if p > 10^225 then return FAIL fi;
           L:= [op(L[2..-1]),nextprime(L[-1])];
         od
       fi;
    end proc:
    map(f, [$1..26]);
Previous Showing 11-18 of 18 results.