cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A306956 Sum over all partitions of n into distinct parts of the LCM of the parts.

Original entry on oeis.org

1, 1, 2, 5, 7, 15, 21, 39, 58, 90, 142, 218, 325, 465, 695, 948, 1411, 1977, 2883, 3940, 5415, 7422, 10126, 14091, 18947, 25666, 34282, 45890, 60710, 82211, 108510, 142960, 185271, 240595, 315158, 409231, 531967, 688689, 880997, 1126451, 1447754, 1849743
Offset: 0

Views

Author

Alois P. Heinz, Mar 17 2019

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, r) option remember; `if`(i*(i+1)/2 b(n$2, 1):
    seq(a(n), n=0..44);
  • Mathematica
    b[n_, i_, r_] := b[n, i, r] = If[i(i+1)/2 < n, 0, If[n == 0, r, b[n, i-1, r] + b[n-i, Min[i-1, n-i], LCM[i, r]]]];
    a[n_] := b[n, n, 1];
    Table[a[n], {n, 0, 44}] (* Jean-François Alcover, Mar 20 2019, translated from Maple *)

Formula

a(n) mod 2 = A040051(n).
a(n) is even <=> n in { A001560 }.
a(n) is odd <=> n in { A052002 }.

A331230 Numbers k such that the number of factorizations of k into distinct factors > 1 is odd.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 12, 13, 17, 18, 19, 20, 23, 24, 25, 28, 29, 30, 31, 32, 36, 37, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 60, 61, 63, 66, 67, 68, 70, 71, 72, 73, 75, 76, 78, 79, 80, 83, 84, 88, 89, 90, 92, 97, 98, 99, 100, 101, 102
Offset: 1

Views

Author

Gus Wiseman, Jan 12 2020

Keywords

Comments

First differs from A319237 in lacking 300.

Crossrefs

The version for strict integer partitions is A001318.
The version for integer partitions is A052002.
The version for set partitions appears to be A032766.
The non-strict version is A331050.
The version for primes (instead of odds) is A331201.
The even version is A331231.
Factorizations are A001055 with image A045782 and complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.
The least number with n strict factorizations is A330974(n).

Programs

  • Mathematica
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],OddQ[Length[strfacs[#]]]&]

A356508 G.f. A(x) satisfies: 2 = Product_{n>=1} (1 + x^n*A(x)) * (1 + x^(n-1)/A(x)).

Original entry on oeis.org

1, 4, 14, 84, 444, 2928, 18214, 125428, 844534, 5989816, 42186878, 305757288, 2215509018, 16326672796, 120612763510, 900561207232, 6746557569136, 50906726784700, 385432963013140, 2933390906035044, 22395805754363208, 171660252748284852, 1319474586701337644
Offset: 0

Views

Author

Paul D. Hanna, Aug 11 2022

Keywords

Comments

Conjecture: a(n) == 2 (mod 4) at n = 2*k for all k > 0 that have an odd number of partitions (A052002), otherwise a(n) == 0 (mod 4) when n > 0.

Examples

			G.f.: A(x) = 1 + 4*x + 14*x^2 + 84*x^3 + 444*x^4 + 2928*x^5 + 18214*x^6 + 125428*x^7 + 844534*x^8 + 5989816*x^9 + 42186878*x^10 + ...
such that
2 = (1 + x*A(x))*(1 + 1/A(x)) * (1 + x^2*A(x))*(1 + x/A(x)) * (1 + x^3*A(x))*(1 + x^2/A(x)) * (1 + x^4*A(x))*(1 + x^3/A(x)) * (1 + x^5*A(x))*(1 + x^4/A(x)) * ...
also,
2/P(x) = ... + x^10/A(x)^5 + x^6/A(x)^4 + x^3/A(x)^3 + x/A(x)^2 + 1/A(x) + 1 + x*A(x) + x^3*A(x)^2 + x^6*A(x)^3 + x^10*A(x)^4 + ... + x^(n*(n+1)/2) * A(x)^n + ...
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + 56*x^11 + 77*x^12 + ... + A000041(n)*x^n + ...
and
2/P(x) = 2 - 2*x - 2*x^2 + 2*x^5 + 2*x^7 - 2*x^12 - 2*x^15 + 2*x^22 + 2*x^26 - 2*x^35 - 2*x^40 + 2*x^51 + 2*x^57 - 2*x^70 - 2*x^77 + 2*x^92 + 2*x^100 + ...
		

Crossrefs

Programs

  • Mathematica
    (* Calculation of constants {d,c}: *) {1/r, -s*Log[r]/2 * Sqrt[-(r*(1 + s)*(QPochhammer[-s, r]^2* Derivative[0, 1][QPochhammer][-1/s, r] + 2*(1 + s) * Derivative[0, 1][QPochhammer][-s, r])) / (Pi * QPochhammer[-s, r] * (s* Log[r]^2 + (1 + s)^2*(QPolyGamma[1, Log[-1/s]/Log[r], r] + QPolyGamma[1, Log[-s]/Log[r], r])))]} /. FindRoot[{QPochhammer[-1/s, r]*QPochhammer[-s, r] == 2*(1 + s), (1 + s)*(QPolyGamma[0, Log[-1/s]/Log[r], r] - QPolyGamma[0, Log[-s]/Log[r], r]) == s*Log[r]}, {r, 1/8}, {s, 3}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 30 2023 *)
  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
    A[#A] = polcoeff( -2 + prod(n=1, #A, (1 + x^n*Ser(A)) * (1 + x^(n-1)/Ser(A)) ), #A-1)); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=[1], M, P=prod(k=1, n, 1-x^k +x*O(x^n))); for(i=1, n, A=concat(A, 0); M = ceil(sqrt(2*n+9));
    A[#A] = polcoeff( -2*P + sum(m=-M, M, x^(m*(m+1)/2)*Ser(A)^m ), #A-1)); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) satisfies:
(1) 2/P(x) = Sum_{n=-oo..+oo} x^(n*(n+1)/2) * A(x)^n, where P(x) = 1/Product_{n>=1} (1 - x^n) is the partition function (A000041)..
(2) 2 = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)), by the Jacobi triple product identity.
a(n) ~ c * d^n / n^(3/2), where d = 8.2221649228195625... and c = 1.06682907735826... - Vaclav Kotesovec, Mar 14 2023

A127700 Numbers n such that partition number of n^2 is even.

Original entry on oeis.org

3, 5, 8, 10, 16, 20, 21, 23, 26, 28, 30, 39, 41, 43, 45, 46, 47, 48, 49, 50, 51, 56, 58, 59, 63, 66, 68, 70, 71, 73, 76, 78, 80, 82, 84, 85, 86, 87, 88, 92, 93, 95, 96, 97, 100, 102, 103, 111, 112, 113, 115, 117, 120, 121, 122, 123, 125, 127, 129, 131, 134, 135, 137
Offset: 1

Views

Author

Zak Seidov, Apr 03 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[200],EvenQ[PartitionsP[ #^2]]&]

Formula

A000041(n^2) is even.
Previous Showing 11-14 of 14 results.