cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A052030 Primes base 10 that remain primes in four bases b, 2<=b<=10, expansions interpreted as decimal numbers.

Original entry on oeis.org

19, 23, 37, 67, 79, 103, 127, 191, 193, 211, 229, 277, 311, 313, 337, 379, 409, 433, 443, 577, 613, 619, 631, 643, 647, 653, 787, 857, 883, 907, 919, 947, 997, 1021, 1039, 1087, 1097, 1123, 1171, 1279, 1423, 1429, 1447, 1459, 1471, 1567, 1597, 1669, 1693
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1999

Keywords

Examples

			19 is 103_4, 31_6, 23_8 and 19_10.
		

Crossrefs

Programs

A052031 Primes base 10 that remain primes in three bases b, 2<=b<=10, expansions interpreted as decimal numbers.

Original entry on oeis.org

11, 13, 17, 29, 31, 47, 59, 61, 83, 89, 97, 101, 109, 149, 151, 179, 181, 197, 227, 241, 251, 281, 331, 349, 353, 359, 373, 383, 419, 421, 439, 449, 457, 487, 503, 541, 547, 563, 587, 601, 617, 659, 673, 709, 727, 733, 743, 751, 773, 811, 823, 877, 953, 967
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1999

Keywords

Examples

			11 is 23_4, 13_8 and 11_10.
		

Crossrefs

Programs

A256351 Composites in base 10 that remain composite in exactly seven bases b, 2 <= b <= 10, expansions interpreted as decimal numbers.

Original entry on oeis.org

8, 9, 15, 16, 21, 22, 25, 28, 34, 75, 87, 91, 93, 94, 106, 111, 123, 141, 143, 145, 147, 155, 172, 201, 205, 214, 217, 237, 255, 298, 304, 305, 363, 371, 376, 377, 385, 388, 395, 403, 411, 423, 428, 442, 458, 466, 471, 473, 483, 495, 501, 505, 507, 531, 533
Offset: 1

Views

Author

Sebastian Petzelberger, Mar 25 2015

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(b,x) local L,i;
    L:= convert(x,base,b);
    isprime(add(10^(i-1)*L[i],i=1..nops(L)))
    end proc:
    select(t -> not isprime(t) and nops(select(f,[$2..9],t))=2, [$1..1000]); # Robert Israel, Mar 26 2015
  • Mathematica
    fQ[n_] := CompositeQ@ n && Count[ CompositeQ[ FromDigits[ IntegerDigits[n, #]] & /@ Range[2, 9]], True] == 6; Select[ Range@ 500, fQ] (* Robert G. Wilson v, Mar 26 2015 *)

A256352 Composites in base 10 that remain composite in exactly six bases b, 2 <= b <= 10, expansions interpreted as decimal numbers.

Original entry on oeis.org

10, 33, 39, 133, 183, 185, 203, 235, 291, 295, 303, 325, 343, 381, 391, 451, 475, 517, 535, 539, 561, 583, 655, 703, 723, 753, 775, 791, 799, 841, 867, 889, 895, 943, 1003, 1023, 1083, 1099, 1121, 1159, 1165, 1173, 1186, 1198, 1207, 1219, 1263, 1333, 1366
Offset: 1

Views

Author

Sebastian Petzelberger, Mar 25 2015

Keywords

Crossrefs

A256353 Composites in base 10 that remain composite in exactly five bases b, 2 <= b <= 10, expansions interpreted as decimal numbers.

Original entry on oeis.org

55, 169, 247, 253, 323, 493, 529, 556, 671, 1027, 1111, 1243, 1261, 1339, 1375, 1711, 1751, 1803, 2185, 2413, 2431, 2881, 3193, 4381, 4417, 4843, 5029, 5203, 5251, 6631, 7093, 7999, 8515, 8653, 9271, 9307, 9481, 9523, 9593, 9727, 9745, 9937, 9955, 10393, 10555
Offset: 1

Views

Author

Sebastian Petzelberger, Mar 25 2015

Keywords

Comments

Less remaining is not possible for even numbers.

Crossrefs

A256354 Composites in base 10 that remain composite in exactly four bases b, 2 <= b <= 10, expansions interpreted as decimal numbers.

Original entry on oeis.org

115, 2563, 3523, 5071, 9193, 10873, 12223, 12811, 13231, 15775, 19111, 20203, 23089, 25831, 27007, 28171, 34189, 39859, 40033, 43361, 55033, 57871, 58813, 74371, 84253, 89377, 93043, 95833, 101683, 117001, 125359, 126673, 128953, 131029, 134527, 137467, 138193
Offset: 1

Views

Author

Sebastian Petzelberger, Mar 25 2015

Keywords

Crossrefs

A256355 Composites in base 10 that remain composite in exactly three bases b, 2 <= b <= 10, expansions interpreted as decimal numbers.

Original entry on oeis.org

11233, 42241, 98281, 131239, 161953, 315151, 358135, 606553, 692263, 785851, 1114081, 1130419, 1525777, 1906363, 3369313, 3403081, 3880873, 5616721, 6036103, 6947611, 7253191, 7516783, 7886593, 8799127, 8811223, 9108289, 9113203, 9195313, 9450361, 9600769
Offset: 1

Views

Author

Sebastian Petzelberger, Mar 25 2015

Keywords

Examples

			11233 = 324413_5 and 324413_10 is composite; 11233 = 44515_7 and 44515_10 is composite; 11233_10 itself is composite. Interpreted in base 2, 3, 4, 6, 8, and 9 the result is prime. Hence 11233 is in this sequence.
		

Crossrefs

Programs

A319858 a(n) is the number of values of m in the interval [2,10] such that the base-m expansion of n, interpreted as a base-10 number, yields a prime.

Original entry on oeis.org

0, 8, 8, 1, 7, 1, 5, 2, 2, 3, 3, 1, 3, 0, 2, 2, 3, 0, 4, 0, 2, 2, 4, 0, 2, 1, 1, 2, 3, 0, 3, 0, 3, 2, 1, 0, 4, 1, 3, 0, 2, 0, 5, 0, 1, 1, 3, 1, 1, 1, 0, 1, 2, 0, 4, 1, 1, 1, 3, 0, 3, 0, 1, 1, 1, 1, 4, 1, 0, 0, 5, 0, 2, 0, 2, 0, 1, 0, 4, 0, 1, 1, 3, 1, 1, 0, 2, 1, 3, 0, 2, 0, 2, 2, 1, 0, 3, 0, 0, 0
Offset: 1

Views

Author

Anton Deynega, Sep 29 2018

Keywords

Examples

			a(31)=3 because 31 yields primes for 3 bases in [2,10]:  31 = 11111_2 = 1011_3 = 133_4 = 111_5 = 51_6 = 43_7 = 37_8 = 34_9 = 31_10, and of the decimal numbers 11111, 1011, 133, 111, 51, 43, 37, 34, and 31, the 3 primes are 43, 37, and 31.
		

Crossrefs

Cf. A052026 (where a(n) is 0).

Programs

A386929 a(n) is the least base b in {2,...,10} such that the base-b expansion of n, when read as a decimal integer, is prime; a(n) = 0 if no such base exists.

Original entry on oeis.org

0, 3, 2, 3, 2, 5, 4, 5, 6, 3, 4, 9, 4, 0, 6, 5, 4, 0, 4, 0, 5, 3, 2, 0, 6, 5, 6, 5, 4, 0, 7, 0, 5, 3, 8, 0, 4, 7, 6, 0, 5, 0, 4, 0, 6, 3, 2, 9, 8, 7, 0, 7, 4, 0, 4, 5, 8, 3, 7, 0, 4, 0, 5, 9, 8, 9, 3, 5, 0, 0, 4, 0, 4, 0, 8, 0, 4, 0, 3, 0, 5, 9, 4, 9, 7, 0, 6, 9, 2, 0, 4, 0, 6, 3, 8
Offset: 1

Views

Author

Keywords

Comments

There are infinitely many zeros since if n is a multiple of 2520, then each base-b expansion ends with digit 0.

Examples

			a(10) = 3 since 10 in base 3 is "101" and 101 is prime; base 2 is "1010" -> 1010 composite.
a(11) = 4 since base 4 gives "23" -> 23 is prime; base 2 "1011" -> 1011 composite; base 3 "102" -> 102 composite.
a(23) = 2 since base 2 gives "10111" -> 10111 is prime.
		

Crossrefs

Cf. A038537, A052026 (the zeros), A052033 (the tens).

Programs

  • Mathematica
    a[n_] := Block[{m}, Do[m = FromDigits[IntegerDigits[n, b], 10]; If[PrimeQ[m], Return[b]], {b, 2, 10}]; 0]
  • PARI
    a(n) = for(b=2, 10, if (isprime(fromdigits(digits(n, b))), return(b))); \\ Michel Marcus, Aug 09 2025

Formula

a(2520*n) = 0.
Previous Showing 11-19 of 19 results.