A206294
Riordan array (1, x/(1-x)^3).
Original entry on oeis.org
1, 0, 1, 0, 3, 1, 0, 6, 6, 1, 0, 10, 21, 9, 1, 0, 15, 56, 45, 12, 1, 0, 21, 126, 165, 78, 15, 1, 0, 28, 252, 495, 364, 120, 18, 1, 0, 36, 462, 1287, 1365, 680, 171, 21, 1, 0, 45, 792, 3003, 4368, 3060, 1140, 231, 24, 1
Offset: 0
Triangle begins:
1
0, 1
0, 3, 1
0, 6, 6, 1
0, 10, 21, 9, 1
0, 15, 56, 45, 12, 1
0, 21, 126, 165, 78, 15, 1
0, 28, 252, 495, 364, 120, 18, 1
0, 36, 462, 1287, 1365, 680, 171, 21, 1
0, 45, 792, 3003, 4368, 3060, 1140, 231, 24, 1
0, 55, 1287, 6435, 12376, 11628, 5985, 1771, 300, 27, 1
0, 66, 2002, 12870, 31824, 38760, 26324, 10626, 2600, 378, 30, 1
-
# Uses function PMatrix from A357368.
PMatrix(10, n -> n * (n + 1) / 2); # Peter Luschny, Oct 07 2022
-
Table[If[n == 0 && k == 0 , 1, Binomial[n - 1 + 2 k, n - k]], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 25 2017 *)
-
{T(n,k)=polcoeff(1/(1-x+x*O(x^(n-k)))^(3*k),n-k)}
-
{T(n,k)=polcoeff(polcoeff((1-x)^3/((1-x)^3-y*x +x*O(x^n)),n,x),k,y)}
for(n=0,12,for(k=0,n,print1(T(n,k),", "));print(""))
A376159
G.f. satisfies A(x) = 1 / ((1-x)^3 - x*A(x)).
Original entry on oeis.org
1, 4, 17, 90, 539, 3451, 23100, 159720, 1131905, 8178326, 60019533, 446166771, 3352530190, 25422458170, 194302002463, 1495223230621, 11575504625874, 90090318248607, 704480581789900, 5532228951823605, 43610427926723780, 344972119634359080, 2737451123900901555
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(2/((1-x)^3+sqrt((1-x)^6-4*x)))
-
a(n) = sum(k=0, n, binomial(n+5*k+2, n-k)*binomial(2*k, k)/(k+1));
A376160
G.f. satisfies A(x) = 1 / ((1-x)^3 - x*A(x)^3).
Original entry on oeis.org
1, 4, 25, 260, 3205, 42966, 609567, 8999164, 136811781, 2127343669, 33675622992, 540878965522, 8792433396559, 144383416380703, 2391557494237062, 39910530610590312, 670383542665237001, 11325278943044058378, 192301381444863249559, 3280101940070399446926
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+11*k+2, n-k)*binomial(4*k, k)/(3*k+1));
A052603
E.g.f. (1-x)^3/(1-4x+3x^2-x^3).
Original entry on oeis.org
1, 1, 8, 78, 984, 15480, 292320, 6441120, 162207360, 4595512320, 144662112000, 5009199148800, 189221439052800, 7743449813299200, 341258374762905600, 16113703632009984000, 811588993992032256000, 43431603596770701312000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{S=Sequence(Prod(Z,Sequence(Z),Sequence(Z),Sequence(Z)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
A350498
Convolution of triangular numbers with every third number of Narayana's Cows sequence.
Original entry on oeis.org
0, 1, 7, 31, 114, 385, 1250, 3987, 12619, 39810, 125425, 394955, 1243433, 3914383, 12322293, 38789576, 122105944, 384377494, 1209981891, 3808901216, 11990036895, 37743426054, 118812495000, 374009739009, 1177344897390, 3706162867858, 11666626518622, 36725362368682, 115607732787126, 363921470561515
Offset: 1
For n=4, a(4) = N(2)*t(3) + N(5)*t(2) + N(8)*t(1) + N(11)*t(0) = 1*6 + 4*3 + 13*1 + 41*0 = 31, where N(k)=A000930(k) and t(k)=A000217(k).
- G. Dresden and M. Tulskikh, "Convolutions of Sequences with Single-Term Signature Differences", preprint.
-
CoefficientList[
Series[x/((-1 + x)^3 (-1 + 4 x - 3 x^2 + x^3)), {x, 0, 30}], x]
Comments