cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A338717 a(n) = sum of 4th powers of entries in row n of Stern's triangle A337277.

Original entry on oeis.org

1, 3, 37, 395, 4277, 46251, 500213, 5409835, 58507765, 632765739, 6843407605, 74011952171, 800444658677, 8656867341099, 93624651434741, 1012557431099947, 10950882439229941, 118434591969329451, 1280878746784164085, 13852797030687146027, 149819009843990278133
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2020

Keywords

Crossrefs

Cf. A337277.
For 2nd and 3rd powers see A052984, A169634.

Programs

  • Mathematica
    LinearRecurrence[{10,9,-2},{1,3,37},30] (* Harvey P. Dale, Apr 07 2022 *)

Formula

G.f.: -(2*x^2+7*x-1)/((x+1)*(2*x^2-11*x+1)). - Alois P. Heinz, Nov 19 2020

A385082 Sum of squared coefficients of Product_{i=0..n-1} 1+x^(2^i+1)+x^(2^(i+1)+1).

Original entry on oeis.org

1, 3, 13, 55, 249, 1121, 5025, 22607, 101931, 460877, 2088687, 9482763, 43109307, 196163983, 893222041, 4069162197, 18543631161, 84525140297, 385343891847, 1756959373157, 8011450183181, 36533108258455, 166602342944307, 759783053580809, 3465042771956289, 15802856371611411
Offset: 0

Views

Author

Michel Marcus, Jun 16 2025

Keywords

Crossrefs

Cf. A052984 (with 1+x^(2^i)+x^(2^(i+1)) instead).

Programs

  • Maple
    b:= proc(n) option remember; expand(`if`(n<0, 1,
           b(n-1)*(1+x^(2^n+1)+x^(2^(n+1)+1))))
        end:
    a:= n-> add(i^2, i=[coeffs(b(n-1))]):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jun 17 2025
  • Mathematica
    a[n_]:=Total[CoefficientList[Product[ 1+x^(2^i+1)+x^(2^(i+1)+1),{i,0,n-1}],x]^2]; Array[a,20,0] (* Stefano Spezia, Jun 17 2025 *)
  • PARI
    a(n) = norml2(Vec(prod(i=0, n-1, 1+x^(2^i+1)+x^(2^(i+1)+1))));
    
  • Python
    from collections import Counter
    from itertools import count, islice
    def A385082_gen(): # generator of terms
        c = Counter({0:1})
        for n in count(0):
            yield sum(i**2 for i in c.values())
            c = sum((Counter({i:j,(m:=1<A385082_list = list(islice(A385082_gen(),10)) # Chai Wah Wu, Jun 18 2025
Previous Showing 11-12 of 12 results.