A338717 a(n) = sum of 4th powers of entries in row n of Stern's triangle A337277.
1, 3, 37, 395, 4277, 46251, 500213, 5409835, 58507765, 632765739, 6843407605, 74011952171, 800444658677, 8656867341099, 93624651434741, 1012557431099947, 10950882439229941, 118434591969329451, 1280878746784164085, 13852797030687146027, 149819009843990278133
Offset: 0
Links
- Richard P. Stanley, Some Linear Recurrences Motivated by Stern's Diatomic Array, arXiv:1901.04647 [math.CO], 2019. Also American Mathematical Monthly 127.2 (2020): 99-111.
- Index entries for linear recurrences with constant coefficients, signature (10,9,-2).
Programs
-
Mathematica
LinearRecurrence[{10,9,-2},{1,3,37},30] (* Harvey P. Dale, Apr 07 2022 *)
Formula
G.f.: -(2*x^2+7*x-1)/((x+1)*(2*x^2-11*x+1)). - Alois P. Heinz, Nov 19 2020