cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A054323 Fifth column of Lanczos triangle A053125 (decreasing powers).

Original entry on oeis.org

5, 140, 2016, 21120, 183040, 1397760, 9748480, 63504384, 392232960, 2321285120, 13264486400, 73610035200, 398475657216, 2111580405760, 10984378859520, 56221121904640, 283661115064320, 1413061420253184, 6959221409054720
Offset: 0

Views

Author

Keywords

References

  • C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.

Crossrefs

Bisection of A080951.

Programs

  • GAP
    List([0..20], n-> 4^n*Binomial(2*n+5, 4)); # G. C. Greubel, Jul 22 2019
  • Magma
    [4^n*Binomial(2*n+5, 4): n in [0..20]]; // G. C. Greubel, Jul 22 2019
    
  • Mathematica
    Table[4^n Binomial[2n+5,4],{n,0,20}] (* or *) LinearRecurrence[{20,-160, 640,-1280,1024},{5,140,2016,21120,183040},20] (* Harvey P. Dale, Mar 03 2018 *)
  • PARI
    vector(20, n, n--; 4^n*binomial(2*n+5, 4)) \\ G. C. Greubel, Jul 22 2019
    
  • Sage
    [4^n*binomial(2*n+5, 4) for n in (0..20)] # G. C. Greubel, Jul 22 2019
    

Formula

a(n) = 4^n*binomial(2*n+5, 4) = 4^n*A053126(n+4) = A053125(n+4, 4).
G.f.: (5 +40*x +16*x^2)/(1-4*x)^5.
E.g.f.: (15 +360*x +1464*x^2 +1664*x^3 +512*x^4)*exp(4*x)/3. - G. C. Greubel, Jul 22 2019
a(n) = 20*a(n-1)-160*a(n-2)+640*a(n-3)-1280*a(n-4)+1024*a(n-5). - Wesley Ivan Hurt, May 02 2021

A196790 Binomial coefficients C(2*n-9,10).

Original entry on oeis.org

11, 286, 3003, 19448, 92378, 352716, 1144066, 3268760, 8436285, 20030010, 44352165, 92561040, 183579396, 348330136, 635745396, 1121099408, 1917334783, 3190187286, 5178066751, 8217822536, 12777711870, 19499099620, 29248649430, 43183019880, 62828356305, 90177170226
Offset: 10

Views

Author

Vincenzo Librandi, Oct 07 2011

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(2*n-9,10): n in [10..40]];
  • Mathematica
    a[n_] := Binomial[2*n - 9, 10]; Array[a, 20, 10] (* Amiram Eldar, Oct 21 2022 *)

Formula

G.f.: x^10*(11+165*x+462*x^2+330*x^3+55*x^4+x^5) / (1-x)^11. - R. J. Mathar, Oct 08 2011
From Amiram Eldar, Oct 21 2022: (Start)
Sum_{n>=10} 1/a(n) = 447187/252 - 2560*log(2).
Sum_{n>=10} (-1)^n/a(n) = 40*Pi + 80*log(2) - 6517/36. (End)
Previous Showing 11-12 of 12 results.