cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A053257 Coefficients of the '5th-order' mock theta function f_1(q).

Original entry on oeis.org

1, 0, 1, -1, 1, -1, 2, -2, 1, -1, 2, -2, 2, -2, 2, -3, 3, -2, 3, -4, 4, -4, 4, -5, 5, -4, 5, -6, 6, -6, 7, -8, 7, -7, 8, -9, 10, -9, 10, -12, 11, -11, 13, -14, 14, -15, 16, -17, 17, -16, 19, -21, 20, -21, 23, -25, 25, -25, 27, -29, 30, -30, 32, -35, 35, -35, 39, -41, 41, -43, 45, -49, 50, -49, 53, -57, 58, -59, 63, -67, 68
Offset: 0

Views

Author

Dean Hickerson, Dec 19 1999

Keywords

References

  • Srinivasa Ramanujan, Collected Papers, Chelsea, New York, 1962, pp. 354-355.
  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 19, 22.

Crossrefs

Other '5th-order' mock theta functions are at A053256, A053258, A053259, A053260, A053261, A053262, A053263, A053264, A053265, A053266, A053267.

Programs

  • Mathematica
    Series[Sum[q^(n^2+n)/Product[1+q^k, {k, 1, n}], {n, 0, 9}], {q, 0, 100}]
    nmax = 100; CoefficientList[Series[Sum[x^(k^2+k) / Product[1+x^j, {j, 1, k}], {k, 0, Floor[Sqrt[nmax]]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 15 2019 *)

Formula

G.f.: f_1(q) = Sum_{n>=0} q^(n^2+n)/((1+q)(1+q^2)...(1+q^n)).
Consider partitions of n into parts differing by at least 2 and with smallest part at least 2. a(n) is the number of them with largest part even minus number with largest part odd.
a(n) ~ (-1)^n * sqrt(phi) * exp(Pi*sqrt(n/15)) / (2*5^(1/4)*sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 15 2019

A053259 Coefficients of the '5th-order' mock theta function phi_1(q).

Original entry on oeis.org

0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 3, 2, 2, 3, 3, 2, 2, 2, 3, 3, 2, 3, 4, 2, 2, 4, 4, 3, 3, 4, 4, 4, 3, 4, 5, 4, 4, 5, 5, 4, 4, 5, 6, 5, 4, 6, 7, 5, 5, 6, 7, 6, 6, 7, 7, 7, 6, 8, 9, 7, 7, 9
Offset: 0

Views

Author

Dean Hickerson, Dec 19 1999

Keywords

References

  • Srinivasa Ramanujan, Collected Papers, Chelsea, New York, 1962, pp. 354-355.
  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 19, 22, 25.

Crossrefs

Other '5th-order' mock theta functions are at A053256, A053257, A053258, A053260, A053261, A053262, A053263, A053264, A053265, A053266, A053267.

Programs

  • Mathematica
    Series[Sum[q^(n+1)^2 Product[1+q^(2k-1), {k, 1, n}], {n, 0, 9}], {q, 0, 100}]
    nmax = 100; CoefficientList[Series[Sum[x^((k+1)^2) * Product[1+x^(2*j-1), {j, 1, k}], {k, 0, Floor[Sqrt[nmax]]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 12 2019 *)

Formula

G.f.: phi_1(q) = Sum_{n>=0} q^(n+1)^2 (1+q)(1+q^3)...(1+q^(2n-1)).
a(n) is the number of partitions of n into odd parts such that each occurs at most twice, the largest part is unique and if k occurs as a part then all smaller positive odd numbers occur.
a(n) ~ exp(Pi*sqrt(n/30)) / (2*5^(1/4)*sqrt(phi*n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 12 2019

A333179 G.f.: Sum_{k>=0} (x^(k*(k+1)) * Product_{j=1..k} (1 + x^j)).

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 2, 3, 2, 2, 3, 2, 3, 4, 4, 4, 5, 5, 5, 5, 4, 5, 5, 4, 4, 4, 4, 5, 6, 5, 6, 7, 7, 8, 8, 8, 8, 9, 8, 8, 8, 7, 8, 8, 8, 8, 9, 9, 10, 11, 11
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 10 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(n*(n+1))*Product[1+x^k, {k, 1, n}], {n, 0, Sqrt[nmax]}], {x, 0, nmax}], x]
    nmax = 100; p = 1; s = 1; Do[p = Expand[p*(1 + x^k)*x^(2*k)]; p = Take[p, Min[nmax + 1, Exponent[p, x] + 1, Length[p]]]; s += p;, {k, 1, Sqrt[nmax]}]; Take[CoefficientList[s, x], nmax + 1]

Formula

a(n) ~ c * A333198^sqrt(n) / sqrt(n), where c = 0.3207396095989103757477946185... = sqrt((1 - (2/(23*(23 + 3*sqrt(69))))^(1/3) + ((1/2)*(23 + 3*sqrt(69)))^(1/3)/23^(2/3))/3)/2, c = sqrt(s)/2, where s is the real root of the equation -1 + 8*s - 23*s^2 + 23*s^3 = 0.
Limit_{n->infinity} A306734(n) / a(n) = A060006 = (1/2 + sqrt(23/3)/6)^(1/3) + (1/2 - sqrt(23/3)/6)^(1/3) = 1.32471795724474602596090885...

A333374 G.f.: Sum_{k>=1} (x^(k*(k+1)) * Product_{j=1..k} (1 + x^j)/(1 - x^j)).

Original entry on oeis.org

1, 0, 1, 2, 2, 2, 3, 4, 6, 8, 10, 12, 15, 18, 22, 28, 34, 42, 52, 62, 75, 90, 106, 126, 150, 176, 208, 246, 288, 338, 397, 462, 538, 626, 724, 838, 968, 1114, 1282, 1474, 1690, 1936, 2217, 2532, 2890, 3296, 3750, 4264, 4844, 5492, 6222, 7042, 7958, 8986, 10138
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 17 2020

Keywords

Comments

The g.f. Sum_{k >= 1} x^(k*(k+1)) * Product_{j = 1..k} (1 + x^j)/(1 - x^j) = Sum_{k >= 1} x^(k*(k+1)) * Product_{j = 1..k} (1 + x^j)/(1 - x^j + 2*x^j) == Sum_{k >= 1} x^(k*(k+1)) (mod 2). It follows that a(n) is odd iff n = k*(k + 1) for some nonnegative integer k. - Peter Bala, Jan 04 2025

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(n*(n+1))*Product[(1+x^k)/(1-x^k), {k, 1, n}], {n, 0, Sqrt[nmax]}], {x, 0, nmax}], x]
    nmax = 100; p = 1; s = 1; Do[p = Normal[Series[p*(1 + x^k)/(1 - x^k)*x^(2*k), {x, 0, nmax}]]; s += p;, {k, 1, Sqrt[nmax]}]; Take[CoefficientList[s, x], nmax + 1]

Formula

Limit_{n->infinity} A066447(n) / a(n) = A058265 = (1 + (19+3*sqrt(33))^(1/3) + (19-3*sqrt(33))^(1/3))/3 = 1.839286755214... (the tribonacci constant).
Compare with: A306734(n) / A333179(n) -> A060006 (the plastic constant) and A003114(n) / A003106(n) -> A001622 (golden ratio).
a(n) ~ c * d^sqrt(n) / n^(3/4), where d = A376841 = 7.1578741786143524880205... = exp(2*sqrt(log(r)^2 - polylog(2, -r^2) + polylog(2, r^2))) and c = 0.10511708841962944170826735560432... = (log(r)^2 - polylog(2, -r^2) + polylog(2, r^2))^(1/4) * sqrt(1/24 - sinh(arcsinh(sqrt(11)/4)/3) / (12*sqrt(11))) / sqrt(Pi), where r = A192918 = 0.54368901269207636157... is the real root of the equation r^2*(1+r) = 1-r. - Vaclav Kotesovec, Mar 17 2020, updated Oct 10 2024

A376631 G.f.: Sum_{k>=0} x^(k*(k+1)/2) * Product_{j=1..k} (1 + x^(2*j)).

Original entry on oeis.org

1, 1, 0, 2, 0, 1, 1, 1, 1, 1, 2, 0, 3, 0, 2, 1, 3, 1, 3, 1, 2, 3, 2, 3, 2, 4, 1, 5, 2, 5, 2, 6, 1, 7, 2, 7, 3, 6, 4, 7, 5, 6, 7, 6, 7, 7, 9, 5, 11, 5, 12, 6, 14, 5, 15, 6, 16, 7, 17, 7, 18, 9, 18, 11, 19, 12, 20, 14, 19, 17, 19, 19, 20, 23, 18, 27, 18, 29, 20, 32, 19
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(k*(k+1)/2)*Product[1+x^(2*j), {j, 1, k}], {k, 0, Sqrt[2*nmax]}], {x, 0, nmax}], x]
    nmax = 100; p = 1; s = 1; Do[p = Expand[p*(1 + x^(2*k))*x^k]; p = Take[p, Min[nmax + 1, Exponent[p, x] + 1, Length[p]]]; s += p;, {k, 1, Sqrt[2*nmax]}]; Take[CoefficientList[s, x], nmax + 1]

Formula

G.f.: Sum_{k>=0} Product_{j=1..k} (x^j + x^(3*j)).
a(n) ~ c * A376660^sqrt(n) / sqrt(n), where c = 1/(2*sqrt(3 - 4*sinh(arcsinh(3^(3/2)/2) / 3) / sqrt(3))) = 0.39098976711379944962936707496887239986756106886318...
a(n) ~ A376580(n) * (A376660/A376621)^sqrt(n).

A376812 G.f.: Sum_{k>=0} x^(k*(k+1)/2) * Product_{j=1..k} (1 + x^j)^2.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 5, 5, 5, 7, 8, 10, 13, 14, 16, 19, 21, 25, 29, 33, 40, 45, 50, 57, 64, 72, 81, 93, 104, 117, 134, 148, 165, 185, 204, 227, 253, 280, 310, 345, 381, 422, 469, 514, 567, 625, 685, 753, 825, 903, 990, 1086, 1186, 1297, 1419, 1548, 1692, 1845, 2007
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 05 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(n*(n+1)/2)*Product[1+x^k, {k, 1, n}]^2, {n, 0, Sqrt[2*nmax]}], {x, 0, nmax}], x]
    nmax = 100; p = 1; s = 1; Do[p = Expand[p*(1 + x^k)*(1 + x^k)*x^k]; p = Take[p, Min[nmax + 1, Exponent[p, x] + 1, Length[p]]]; s += p;, {k, 1, Sqrt[2*nmax]}]; Take[CoefficientList[s, x], nmax + 1]

Formula

G.f.: Sum_{k>=0} Product_{j=1..k} (1 + x^j)^2 * x^j.
a(n) ~ c * A376815^sqrt(n) / sqrt(n), where c = 1/(4*sqrt(3/2 - 2*sinh(arcsinh(3^(3/2)/2)/3)/sqrt(3))) = 0.27647151570071656262813536...

A376630 G.f.: Sum_{k>=0} x^(k*(k+1)/2) * Product_{j=1..k} (1 + x^(2*j-1)).

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 2, 2, 0, 1, 2, 2, 1, 1, 2, 3, 2, 1, 3, 2, 2, 3, 3, 3, 3, 4, 3, 3, 4, 4, 4, 5, 5, 5, 4, 4, 7, 7, 5, 6, 8, 7, 7, 6, 8, 10, 8, 8, 10, 11, 9, 10, 12, 12, 11, 12, 14, 14, 13, 13, 16, 17, 15, 17, 18, 18, 19, 19, 20, 21, 22, 22, 24, 24, 25, 26, 27, 28, 29, 30
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(k*(k+1)/2)*Product[1+x^(2*j-1), {j, 1, k}], {k, 0, Sqrt[2*nmax]}], {x, 0, nmax}], x]
    nmax = 100; p = 1; s = 1; Do[p = Expand[p*(1 + x^(2*k - 1))*x^k]; p = Take[p, Min[nmax + 1, Exponent[p, x] + 1, Length[p]]]; s += p;, {k, 1, Sqrt[2*nmax]}]; Take[CoefficientList[s, x], nmax + 1]

Formula

G.f.: Sum_{k>=0} Product_{j=1..k} (x^j + x^(3*j-1)).
a(n) ~ c * A376660^sqrt(n) / sqrt(n), where c = sqrt(cosh(arccosh(sqrt(31)/2) / 3))/31^(1/4) = 0.456748282933947534736955792823221857...

A376944 G.f.: Sum_{k>=0} 2^k * x^(k*(k+1)/2) * Product_{j=1..k} (1 + x^j).

Original entry on oeis.org

1, 2, 2, 4, 4, 4, 12, 8, 8, 16, 24, 24, 24, 32, 32, 64, 64, 64, 80, 80, 112, 160, 160, 160, 224, 224, 256, 320, 416, 416, 480, 576, 576, 704, 768, 896, 1152, 1216, 1280, 1536, 1600, 1856, 2112, 2304, 2560, 3200, 3456, 3584, 4224, 4480, 5120, 5760, 6144, 6656, 7808, 9088
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 10 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[2^k * x^(k*(k+1)/2) * Product[1+x^j, {j, 1, k}], {k, 0, Sqrt[2*nmax]}], {x, 0, nmax}], x]
    nmax = 60; p = 1; s = 1; Do[p = Normal[Series[2*p*(1 + x^k) * x^k, {x, 0, nmax}]]; s += p; , {k, 1, Sqrt[2*nmax]}]; Take[CoefficientList[s, x], nmax + 1]

Formula

a(n) ~ sqrt(1 + sqrt(3)) * exp(sqrt((2*log(2)^2 + 2*log(1 - sqrt(3)/2) * log(sqrt(3) - 1) + 4*polylog(2, sqrt(3) - 1) - Pi^2/3)*n)) / (4*3^(1/4)*sqrt(n)).

A306732 Expansion of Sum_{k>=0} x^(k*(k+1)/2) * Product_{j=1..k} (1 + j*x^j).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 1, 2, 5, 4, 7, 8, 5, 7, 11, 15, 22, 17, 31, 39, 20, 31, 39, 64, 81, 85, 125, 97, 170, 211, 121, 167, 229, 265, 385, 531, 548, 573, 814, 686, 1150, 1339, 860, 1131, 1344, 1888, 2109, 2780, 3656, 4127, 4294, 4498, 6320, 5568, 8747, 10260, 6856, 8673, 10580
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 06 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 59; CoefficientList[Series[Sum[x^(k (k + 1)/2) Product[(1 + j x^j), {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]

A306733 Expansion of Sum_{k>=0} x^(k*(k+1)/2) * Product_{j=1..k} (1 + x^j)^j.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 2, 3, 5, 5, 8, 11, 11, 17, 19, 22, 33, 38, 50, 69, 82, 103, 133, 165, 201, 249, 319, 389, 492, 621, 765, 974, 1206, 1500, 1857, 2302, 2843, 3494, 4311, 5275, 6533, 8027, 9840, 12138, 14903, 18340, 22541, 27619, 33811, 41429, 50682, 61809, 75422, 91807
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 06 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 54; CoefficientList[Series[Sum[x^(k (k + 1)/2) Product[(1 + x^j)^j, {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]
Previous Showing 11-20 of 20 results.