cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A376841 Decimal expansion of a constant related to the asymptotics of A066447 and A333374.

Original entry on oeis.org

7, 1, 5, 7, 8, 7, 4, 1, 7, 8, 6, 1, 4, 3, 5, 2, 4, 8, 8, 0, 2, 0, 5, 0, 1, 6, 4, 9, 9, 8, 9, 1, 0, 1, 6, 0, 6, 4, 8, 2, 6, 7, 9, 7, 5, 9, 3, 5, 4, 9, 3, 7, 3, 6, 1, 9, 5, 7, 5, 8, 6, 2, 7, 2, 5, 2, 3, 3, 7, 2, 3, 7, 1, 3, 7, 9, 3, 2, 6, 7, 7, 9, 3, 1, 5, 5, 3, 5, 7, 1, 4, 2, 1, 6, 4, 3, 3, 3, 7, 8, 6, 9, 0, 6, 6
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 06 2024

Keywords

Examples

			7.1578741786143524880205016499891016064826797593549373619575862725233...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[E^(2*Sqrt[Log[r]^2 + PolyLog[2, r^2] - PolyLog[2, -r^2]]) /. r -> (-1 - 2/(17 + 3*Sqrt[33])^(1/3) + (17 + 3*Sqrt[33])^(1/3))/3, 10, 105][[1]]

Formula

Equals limit_{n->infinity} A066447(n)^(1/sqrt(n)).
Equals limit_{n->infinity} A333374(n)^(1/sqrt(n)).
Equals exp(2*sqrt(log(r)^2 - polylog(2, -r^2) + polylog(2, r^2))), where r = A192918 = 0.54368901269207636157... is the real root of the equation r^2*(1+r) = 1-r.

A001935 Number of partitions with no even part repeated; partitions of n in which no parts are multiples of 4.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 12, 16, 22, 29, 38, 50, 64, 82, 105, 132, 166, 208, 258, 320, 395, 484, 592, 722, 876, 1060, 1280, 1539, 1846, 2210, 2636, 3138, 3728, 4416, 5222, 6163, 7256, 8528, 10006, 11716, 13696, 15986, 18624, 21666, 25169, 29190, 33808, 39104, 45164
Offset: 0

Views

Author

Keywords

Comments

Also number of partitions of n where no part appears more than three times.
a(n) satisfies Euler's pentagonal number (A001318) theorem, unless n is in A062717 (see Fink et al.).
Also number of partitions of n in which the least part and the differences between consecutive parts is at most 3. Example: a(5)=6 because we have [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1] and [1,1,1,1,1]. - Emeric Deutsch, Apr 19 2006
Equals A000009 convolved with its aerated variant, = polcoeff A000009 * A000041 * A010054 (with alternate signs). - Gary W. Adamson, Mar 16 2010
Equals left border of triangle A174715. - Gary W. Adamson, Mar 27 2010
The Cayley reference is actually to A083365. - Michael Somos, Feb 24 2011
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution of A000009 and A035457. - Vaclav Kotesovec, Aug 23 2015
Convolution inverse is A082303. - Michael Somos, Sep 30 2017
The g.f. in the form Sum_{n >= 0} x^(n*(n+1)/2) * Product_{k = 1..n} (1+x^k)/(1-x^k) = Sum_{n >= 0} x^(n*(n+1)/2) * Product_{k = 1..n} (1+x^k)/(1+x^k-2*x^k) == Sum_{n >= 0} x^(n*(n+1)/2) (mod 2). It follows that a(n) is odd iff n = k*(k + 1)/2 for some nonnegative integer k. Cf. A333374. - Peter Bala, Jan 08 2025

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 6*x^5 + 9*x^6 + 12*x^7 + 16*x^8 + 22*x^9 + ...
G.f. = q + q^9 + 2*q^17 + 3*q^25 + 4*q^33 + 6*q^41 + 9*q^49 + 12*q^57 + 16*q^65 + 22*q^73 + ...
a(5)=6 because we have [5], [4,1], [3,2], [3,1,1], [2,1,1,1] and [1,1,1,1,1].
		

References

  • A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (2.5.2).
  • M. D. Hirschhorn, The Power of q, Springer, 2017. See ped page 303ff.
  • R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 241.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000041, A010054. - Gary W. Adamson, Mar 16 2010
Cf. A174715. - Gary W. Adamson, Mar 27 2010
Cf. A082303.
Number of r-regular partitions for r = 2 through 12: A000009, A000726, A001935, A035959, A219601, A035985, A261775, A104502, A261776, A328545, A328546.

Programs

  • Haskell
    a001935 = p a042968_list where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Sep 02 2012
  • Maple
    g:=product((1+x^j)*(1+x^(2*j)),j=1..50): gser:=series(g,x=0,55): seq(coeff(gser,x,n),n=0..48); # Emeric Deutsch, Apr 19 2006
    # second Maple program:
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
         `if`(irem(d, 4)=0, 0, d), d=divisors(j)), j=1..n)/n)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Nov 24 2015
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q] / EllipticTheta[ 2, Pi/4, q^(1/2)] / (16 q)^(1/8), {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
    a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, 4, n, 4}] / Product[ 1 - x^k, {k, n}], {x, 0, n}]; (* Michael Somos, Jul 08 2011 *)
    CoefficientList[Series[Product[1+x^j+x^(2j)+x^(3j), {j,1,48}], {x,0,48}],x] (* Jean-François Alcover, May 26 2011, after Jon Perry *)
    QP = QPochhammer; CoefficientList[QP[q^4]/QP[q] + O[q]^50, q] (* Jean-François Alcover, Nov 24 2015 *)
    a[0] = 1; a[n_] := a[n] = Sum[a[n-j] DivisorSum[j, If[Divisible[#, 4], 0, #]&], {j, 1, n}]/n; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 19 2016, after Alois P. Heinz *)
    Table[Count[IntegerPartitions@n, x_ /; ! MemberQ [Mod[x, 4], 0, 2] ], {n, 0, 49}] (* Robert Price, Jul 28 2020 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( eta(x^4 + x * O(x^n)) / eta(x + x * O(x^n)), n))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint( 8*n + 1) - 1)\2, prod(i=1, k, (1 + x^i) / (x^-i - 1), 1 + x * O(x^n))), n))}; /* Michael Somos, Jun 01 2004 */
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n+1, x^m/(1+(-x)^m+x*O(x^n))/m)),n)} \\ Paul D. Hanna, Jul 24 2013
    

Formula

Euler transform of period 4 sequence [ 1, 1, 1, 0, ...].
Expansion of q^(-1/8) * eta(q^4) / eta(q) in powers of q. - Michael Somos, Mar 19 2004
Expansion of psi(-x) / phi(-x) = psi(x) / phi(-x^2) = psi(x^2) / psi(-x) = chi(x) / chi(-x^2)^2 = 1 / (chi(x) * chi(-x)^2) = 1 / (chi(-x) * chi(-x^2)) = f(-x^4) / f(-x) in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions. - Michael Somos, Jul 08 2011
G.f.: Product(j>=1, 1 + x^j + x^(2*j) + x^(3*j)). - Jon Perry, Mar 30 2004
G.f.: Product_{k>=1} (1+x^k)^(2-k%2). - Jon Perry, May 05 2005
G.f.: Product_{k>0} (1 + x^(2*k)) / (1 - x^(2*k-1)) = 1 + Sum_{k>0}(Product_{i=1..k} (x^i + 1) / (x^-i - 1)).
G.f.: Sum_{n>=0} ( x^(n*(n+1)/2) * Product_{k=1..n} (1+x^k)/(1-x^k) ). - Joerg Arndt, Apr 07 2011
G.f.: P(x^4)/P(x) where P(x) = Product_{k>=1} 1-x^k. - Joerg Arndt, Jun 21 2011
A083365(n) = (-1)^n a(n). Convolution square is A001936. a(n) = A098491(n) + A098492(n). a(2*n) = A081055(n). a(2*n + 1) = A081056(n).
G.f.: (1+ 1/G(0))/2, where G(k) = 1 - x^(2*k+1) - x^(2*k+1)/(1 + x^(2*k+2) + x^(2*k+2)/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jul 03 2013
G.f.: exp( Sum_{n>=1} (x^n/n) / (1 + (-x)^n) ). - Paul D. Hanna, Jul 24 2013
a(n) ~ Pi * BesselI(1, sqrt(8*n + 1)*Pi/4) / (2*sqrt(8*n + 1)) ~ exp(Pi*sqrt(n/2)) / (4 * (2*n)^(3/4)) * (1 + (Pi/(16*sqrt(2)) - 3/(4*Pi*sqrt(2))) / sqrt(n) + (Pi^2/1024 - 15/(64*Pi^2) - 15/128) / n). - Vaclav Kotesovec, Aug 23 2015, extended Jan 14 2017
a(n) = (1/n)*Sum_{k=1..n} A046897(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017
G.f. is a period 1 Fourier series which satisfies f(-1 / (256 t)) = 1/2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A082303. - Michael Somos, Sep 30 2017

Extensions

More terms from James Sellers

A001936 Expansion of q^(-1/4) * (eta(q^4) / eta(q))^2 in powers of q.

Original entry on oeis.org

1, 2, 5, 10, 18, 32, 55, 90, 144, 226, 346, 522, 777, 1138, 1648, 2362, 3348, 4704, 6554, 9056, 12425, 16932, 22922, 30848, 41282, 54946, 72768, 95914, 125842, 164402, 213901, 277204, 357904, 460448, 590330, 754368, 960948, 1220370, 1545306
Offset: 0

Views

Author

Keywords

Comments

The Cayley reference is actually to A079006. - Michael Somos, Feb 24 2011
In the math overflow link is a conjecture that a(n) == a(9*n + 2) (mod 4).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number of 4-regular bipartitions of n. - N. J. A. Sloane, Oct 20 2019
The g.f. in the form A(x) = Sum_{k >= 0} x^(k*(k+1)) / (1 + 2*Sum_{k >= 1} (-1)^k * x^(k^2)) == Sum_{k >= 0} x^(k*(k+1)) (mod 2). It follows that a(n) is odd iff n = k*(k + 1) for some nonnegative integer k. - Peter Bala, Jan 04 2025

Examples

			G.f. = 1 + 2*x + 5*x^2 + 10*x^3 + 18*x^4 + 32*x^5 + 55*x^6 + 90*x^7 + 144*x^8 + ...
G.f. = q + 2*q^5 + 5*q^9 + 10*q^13 + 18*q^17 + 32*q^21 + 55*q^25 + 90*q^29 + ...
		

References

  • A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.
  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; Eq. (34.3).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Number of r-regular bipartitions of n for r = 2,3,4,5,6: A022567, A328547, A001936, A263002, A328548, A333374.

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> [2,2,2,0] [modp(n-1,4)+1]): seq(a(n), n=0..40); # Alois P. Heinz, Sep 08 2008
    f:=(k,M) -> mul(1-q^(k*j),j=1..M); LRBP := (L,M) -> (f(L,M)/f(1,M))^2; S := L -> seriestolist(series(LRBP(L,80),q,60)); S(4); # N. J. A. Sloane, Oct 20 2019
  • Mathematica
    m = 38; CoefficientList[ Series[ Product[ (1 - x^(4*k))/(1 - x^k), {k, 1, m}]^2 , {x, 0, m}], x] (* Jean-François Alcover, Sep 02 2011, after g.f. *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, x] / EllipticTheta[ 4, 0, x]) / (2 x^(1/4)), {x, 0, n}]; (* Michael Somos, May 16 2015 *)
    a[ n_] := SeriesCoefficient[ (Product[ 1 - x^k, {k, 4, n, 4}] / Product[ 1 - x^k, {k, n}])^2, {x, 0, n}]; (* Michael Somos, May 16 2015 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x^4] / QPochhammer[ x])^2, {x, 0, n}]; (* Michael Somos, May 16 2015 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ -x, x] QPochhammer[ -x^2, x^2])^2, {x, 0, n}]; (* Michael Somos, May 16 2015 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (eta(x^4 + x * O(x^n)) / eta(x + x * O(x^n)))^2, n))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, 1 / if(k%4, 1 - x^k, 1), 1 + x * O(x^n))^2, n))};

Formula

G.f.: Product ( 1 - x^k )^(-c(k)); c(k) = 2, 2, 2, 0, 2, 2, 2, 0, ....
Convolution square of A001935. A079006(n) = (-1)^n a(n).
Expansion of q^(-1/4) * (1/2) * (k / k')^(1/2) in powers of q.
Euler transform of period 4 sequence [ 2, 2, 2, 0, ...].
Given g.f. A(x), then B(q) = (q * A(q^4))^4 satisfies 0 = f(B(q), B(q^2)) where f(u, v) = (1 + 16*u) * (1 + 16*v) * v - u^2. - Michael Somos, Jul 09 2005
Given g.f. A(x), then B(q) = q * A(q^4) satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (u^2 + v^2)^2 - u*v * (1 + 4*u*v)^2. - Michael Somos, Jul 09 2005
G.f.: (Product_{k>0} (1 + x^(2*k)) / (1 - x^(2*k - 1)))^2 = (Product_{k>0} (1 - x^(4*k)) / (1 - x^k))^2.
Equals A000009 convolved with A098613. - Gary W. Adamson, Mar 24 2011
a(9*n + 2) = a(n) + 4 * A210656(3*n). - Michael Somos, Apr 02 2012
Convolution inverse is A082304. - Michael Somos, May 16 2015
G.f. is a period 1 Fourier series which satisfies f(-1 / (64 t)) = (1/4) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A082304. - Michael Somos, May 16 2015
Expansion of f(-x^4)^2 / f(-x)^2 = psi(x^2) / phi(-x) = psi(-x)^2 / phi(-x)^2 = psi(x)^2 / phi(-x^2)^2 = psi(x^2)^2 / psi(-x)^2 = chi(x)^2 / chi(-x^2)^4 = 1 / (chi(x)^2 * chi(-x)^4) = 1 / (chi(-x)^2 * chi(-x^2)^2) in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions. - Michael Somos, May 16 2015
a(n) ~ exp(Pi*sqrt(n)) / (8*sqrt(2)*n^(3/4)). - Vaclav Kotesovec, Aug 18 2015
G.f.: A(x) = Sum_{n >= 0} x^(n*(n+1)) / Sum_{n = -oo..oo} (-1)^n*x^(n^2). - Peter Bala, Feb 19 2021

A066447 Number of basis partitions (or basic partitions) of n.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 6, 8, 10, 13, 16, 20, 26, 32, 40, 50, 61, 74, 90, 108, 130, 156, 186, 222, 264, 313, 370, 436, 512, 600, 702, 818, 952, 1106, 1282, 1484, 1715, 1978, 2278, 2620, 3008, 3448, 3948, 4512, 5150, 5872, 6684, 7600, 8632, 9791, 11094, 12558, 14198, 16036, 18096, 20398
Offset: 0

Views

Author

Herbert S. Wilf, Dec 29 2001

Keywords

Comments

The k-th successive rank of a partition pi = (pi_1, pi_2, ..., pi_s) of the integer n is r_k = pi_k - pi'_k, where pi' denotes the conjugate partition. A partition pi is basic if the number of dots in its Ferrers diagram is the least among all the Ferrers diagrams of partitions with the same rank vector.
The g.f. Sum_{n >= 0} x^(n^2) * Product_{k = 1..n} (1 + x^k)/(1 - x^k) = Sum_{n >= 0} x^(n^2) * Product_{k = 1..n} (1 + x^k)/(1 + x^k - 2*x^k) == Sum_{n >= 0} x^(n^2) (mod 2). It follows that a(n) is odd iff n is a square (Nolan et al., equation 6, p. 282). - Peter Bala, Jan 08 2025

Crossrefs

Programs

  • Maple
    b := proc(n,d); option remember; if n=0 and d=0 then RETURN(1) elif n<=0 or d<=0 then RETURN(0) else RETURN(b(n-d,d)+b(n-2*d+1,d-1)+b(n-3*d+1,d-1)) fi: end: A066447 := n->add(b(n,d),d=0..n);
  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[x^(n^2)*Product[(1 + x^k)/(1 - x^k), {k, 1, n}], {n, 0, Sqrt[nmax]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 17 2020 *)
    nmax = 60; p = 1; s = 1; Do[p = Normal[Series[p*(1 + x^k)/(1 - x^k)*x^(2*k - 1), {x, 0, nmax}]]; s += p;, {k, 1, Sqrt[nmax]}]; Take[CoefficientList[s, x], nmax + 1] (* Vaclav Kotesovec, Mar 17 2020 *)
  • PARI
    N=66; x='x+O('x^N); s=sum(n=0,N,x^(n^2)*prod(k=1,n,(1+x^k)/(1-x^k))); Vec(s) /* Joerg Arndt, Apr 07 2011 */

Formula

G.f.: Sum_{n >= 0} x^(n^2) * Product_{k = 1..n} (1 + x^k)/(1 - x^k) [Given in Nolan et al. reference]. - Joerg Arndt, Apr 07 2011
Limit_{n->infinity} a(n) / A333374(n) = A058265 = (1 + (19+3*sqrt(33))^(1/3) + (19-3*sqrt(33))^(1/3))/3 = 1.839286755214... - Vaclav Kotesovec, Mar 17 2020
a(n) ~ c * d^sqrt(n) / n^(3/4), where d = A376841 = 7.1578741786143524880205... = exp(2*sqrt(log(r)^2 - polylog(2, -r^2) + polylog(2, r^2))) and c = 0.193340468476900308848561788251945... = (log(r)^2 - polylog(2, -r^2) + polylog(2, r^2))^(1/4) * sqrt(1/24 + cosh(arccosh(53*sqrt(11/2)/64)/3) / (3*sqrt(22))) / sqrt(Pi), where r = A192918 = 0.54368901269207636157... is the real root of the equation r^2*(1+r) = 1-r. - Vaclav Kotesovec, Mar 19 2020, updated Oct 10 2024

A376852 G.f.: Sum_{k>=0} x^(k*(k+1)) * Product_{j=1..k} ((1 + x^j)/(1 - x^j))^2.

Original entry on oeis.org

1, 0, 1, 4, 8, 12, 17, 24, 36, 56, 88, 136, 205, 300, 428, 600, 828, 1132, 1540, 2084, 2813, 3788, 5080, 6788, 9032, 11952, 15736, 20612, 26852, 34812, 44929, 57732, 73900, 94268, 119852, 151932, 192072, 242172, 304584, 382164, 478364, 597400, 744365, 925384
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 06 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[x^(k*(k+1)) * Product[(1+x^j)/(1-x^j), {j, 1, k}]^2, {k, 0, Sqrt[nmax]}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(n)) / (2^(9/2) * n).
Showing 1-5 of 5 results.