cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A376841 Decimal expansion of a constant related to the asymptotics of A066447 and A333374.

Original entry on oeis.org

7, 1, 5, 7, 8, 7, 4, 1, 7, 8, 6, 1, 4, 3, 5, 2, 4, 8, 8, 0, 2, 0, 5, 0, 1, 6, 4, 9, 9, 8, 9, 1, 0, 1, 6, 0, 6, 4, 8, 2, 6, 7, 9, 7, 5, 9, 3, 5, 4, 9, 3, 7, 3, 6, 1, 9, 5, 7, 5, 8, 6, 2, 7, 2, 5, 2, 3, 3, 7, 2, 3, 7, 1, 3, 7, 9, 3, 2, 6, 7, 7, 9, 3, 1, 5, 5, 3, 5, 7, 1, 4, 2, 1, 6, 4, 3, 3, 3, 7, 8, 6, 9, 0, 6, 6
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 06 2024

Keywords

Examples

			7.1578741786143524880205016499891016064826797593549373619575862725233...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[E^(2*Sqrt[Log[r]^2 + PolyLog[2, r^2] - PolyLog[2, -r^2]]) /. r -> (-1 - 2/(17 + 3*Sqrt[33])^(1/3) + (17 + 3*Sqrt[33])^(1/3))/3, 10, 105][[1]]

Formula

Equals limit_{n->infinity} A066447(n)^(1/sqrt(n)).
Equals limit_{n->infinity} A333374(n)^(1/sqrt(n)).
Equals exp(2*sqrt(log(r)^2 - polylog(2, -r^2) + polylog(2, r^2))), where r = A192918 = 0.54368901269207636157... is the real root of the equation r^2*(1+r) = 1-r.

A333374 G.f.: Sum_{k>=1} (x^(k*(k+1)) * Product_{j=1..k} (1 + x^j)/(1 - x^j)).

Original entry on oeis.org

1, 0, 1, 2, 2, 2, 3, 4, 6, 8, 10, 12, 15, 18, 22, 28, 34, 42, 52, 62, 75, 90, 106, 126, 150, 176, 208, 246, 288, 338, 397, 462, 538, 626, 724, 838, 968, 1114, 1282, 1474, 1690, 1936, 2217, 2532, 2890, 3296, 3750, 4264, 4844, 5492, 6222, 7042, 7958, 8986, 10138
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 17 2020

Keywords

Comments

The g.f. Sum_{k >= 1} x^(k*(k+1)) * Product_{j = 1..k} (1 + x^j)/(1 - x^j) = Sum_{k >= 1} x^(k*(k+1)) * Product_{j = 1..k} (1 + x^j)/(1 - x^j + 2*x^j) == Sum_{k >= 1} x^(k*(k+1)) (mod 2). It follows that a(n) is odd iff n = k*(k + 1) for some nonnegative integer k. - Peter Bala, Jan 04 2025

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(n*(n+1))*Product[(1+x^k)/(1-x^k), {k, 1, n}], {n, 0, Sqrt[nmax]}], {x, 0, nmax}], x]
    nmax = 100; p = 1; s = 1; Do[p = Normal[Series[p*(1 + x^k)/(1 - x^k)*x^(2*k), {x, 0, nmax}]]; s += p;, {k, 1, Sqrt[nmax]}]; Take[CoefficientList[s, x], nmax + 1]

Formula

Limit_{n->infinity} A066447(n) / a(n) = A058265 = (1 + (19+3*sqrt(33))^(1/3) + (19-3*sqrt(33))^(1/3))/3 = 1.839286755214... (the tribonacci constant).
Compare with: A306734(n) / A333179(n) -> A060006 (the plastic constant) and A003114(n) / A003106(n) -> A001622 (golden ratio).
a(n) ~ c * d^sqrt(n) / n^(3/4), where d = A376841 = 7.1578741786143524880205... = exp(2*sqrt(log(r)^2 - polylog(2, -r^2) + polylog(2, r^2))) and c = 0.10511708841962944170826735560432... = (log(r)^2 - polylog(2, -r^2) + polylog(2, r^2))^(1/4) * sqrt(1/24 - sinh(arcsinh(sqrt(11)/4)/3) / (12*sqrt(11))) / sqrt(Pi), where r = A192918 = 0.54368901269207636157... is the real root of the equation r^2*(1+r) = 1-r. - Vaclav Kotesovec, Mar 17 2020, updated Oct 10 2024

A066448 Triangle T(n,k) giving number of basis partitions of n with a Durfee square of order k (n >= 0, 0 <= k <= n).

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 0, 2, 0, 0, 0, 2, 1, 0, 0, 0, 2, 2, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 2, 6, 0, 0, 0, 0, 0, 0, 2, 8, 0, 0, 0, 0, 0, 0, 0, 2, 10, 1, 0, 0, 0, 0, 0, 0, 0, 2, 12, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 14, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 16, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2001

Keywords

Examples

			Triangle begins:
  1;
  0, 1;
  0, 2, 0;
  0, 2, 0, 0;
  0, 2, 1, 0, 0;
  0, 2, 2, 0, 0, 0;
  0, 2, 4, 0, 0, 0, 0;
  0, 2, 6, 0, 0, 0, 0, 0;
  0, 2, 8, 0, 0, 0, 0, 0, 0;
  ...
		

Crossrefs

Row sums give A066447.

Programs

  • Maple
    T := proc(n,d); option remember; if n=0 and d=0 then RETURN(1) elif n<=0 or d<=0 then RETURN(0) else RETURN(T(n-d,d)+T(n-2*d+1,d-1)+T(n-3*d+1,d-1)) fi:
  • PARI
    T(n,k)=if(k<0||k>n,0,if(k==0,n==0,T(n-k,k)+T(n-2*k+1,k-1)+T(n-3*k+1,k-1))) /* Michael Somos, Mar 10 2004 */

A350310 Alternating row sums of A066448.

Original entry on oeis.org

1, -1, -2, -2, -1, 0, 2, 4, 6, 7, 8, 8, 6, 4, 0, -6, -11, -18, -26, -32, -38, -44, -46, -46, -44, -37, -26, -12, 8, 32, 58, 90, 124, 158, 194, 228, 259, 286, 306, 316, 316, 304, 276, 232, 170, 88, -12, -132, -272, -431, -606, -794, -994, -1200, -1408, -1614, -1808, -1984, -2138, -2258, -2336
Offset: 0

Views

Author

Seiichi Manyama, Jan 12 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=0, sqrtint(N), (-1)^k*x^k^2*prod(j=1, k, (1+x^j)/(1-x^j))))

Formula

a(n) = Sum_{k=0..n} (-1)^k * A066448(n,k).
G.f.: Sum_{k>=0} (-1)^k * x^(k^2) * Product_{j=1..k} (1+x^j)/(1-x^j).

A376854 G.f.: Sum_{k>=0} x^(k^2) * Product_{j=1..k} ((1 + x^j)/(1 - x^j))^2.

Original entry on oeis.org

1, 1, 4, 8, 13, 20, 32, 52, 84, 133, 204, 304, 444, 636, 900, 1264, 1761, 2440, 3364, 4608, 6276, 8496, 11424, 15268, 20284, 26789, 35196, 46016, 59884, 77612, 100204, 128900, 165260, 211200, 269072, 341792, 432917, 546788, 688728, 865200, 1084048, 1354816, 1689048
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 06 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[x^(k^2) * Product[(1+x^j)/(1-x^j), {j, 1, k}]^2, {k, 0, Sqrt[nmax]}], {x, 0, nmax}], x]

Formula

a(n) ~ (1 + sqrt(2)) * exp(Pi*sqrt(n)) / (2^(9/2) * n).

A001130 Number of graphical basis partitions of 2n.

Original entry on oeis.org

1, 1, 3, 4, 6, 11, 16, 23, 36, 52, 71, 103, 141, 197, 272, 366, 482, 657, 863, 1140, 1489, 1951, 2511, 3241, 4155, 5317, 6782, 8574, 10786, 13645, 17111, 21313, 26631, 33020, 41005, 50640, 62373, 76510, 94089, 114991, 140376, 170970, 207837, 251552, 305342, 368474, 444360, 534692, 642593, 770278
Offset: 1

Views

Author

Pranav Kumar Tiwari (pktiwari(AT)eos.ncsu.edu)

Keywords

Comments

A partition of an even integer is graphical if it is the degree sequence of a simple graph.

References

  • Nolan, Jennifer M.; Sivaraman, Vijay; Savage, Carla D.; and Tiwari, Pranav K., Graphical basis partitions, Graphs Combin. 14 (1998), no. 3, 241-261. Math. Rev. 99j:05014. See http://www4.ncsu.edu/~savage/papers.html for postscript file.

Crossrefs

Extensions

Seven more terms (all that are presently known, apparently) added from the Nolan et al. paper by N. J. A. Sloane, Jun 01 2012
Extended b-file from Nolan et al. paper and adjusted description to even n by Ray Chandler, Sep 17 2015

A350636 a(n) is the number of partitions of n in which no part is divisible by 3 minus the number of basis partitions of n.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 3, 3, 6, 7, 10, 12, 17, 20, 28, 34, 45, 55, 72, 87, 111, 133, 167, 200, 247, 295, 362, 431, 523, 621, 749, 885, 1059, 1247, 1482, 1739, 2055, 2402, 2826, 3293, 3855, 4479, 5225, 6051, 7032, 8123, 9406, 10837, 12509, 14372, 16541, 18960, 21756, 24880, 28477
Offset: 0

Views

Author

Michel Marcus, Jan 09 2022

Keywords

Comments

Andrews conjectures that a(n)>0 for n>3.

Crossrefs

Formula

a(n) = A000726(n) - A066447(n).
Showing 1-7 of 7 results.