A378970
Antidiagonal-sums of the array A378622(n,k) = n-th term of k-th differences of strict partition numbers (A000009).
Original entry on oeis.org
1, 1, 1, 5, -4, 18, -20, 47, -56, 110, -153, 309, -532, 1045, -1768, 2855, -3620, 2928, 2927, -20371, 62261, -148774, 314112, -613835, 1155936, -2175658, 4244218, -8753316, 19006746, -42471491, 95234915, -210395017, 453414314, -949507878, 1931940045
Offset: 0
Antidiagonal 4 of A378622 is (2, 0, -1, -2, -3), so a(4) = -4.
Row-sums of the triangular form of
A378622. See also:
-
A175804 is the version for partitions.
-
A293467 gives the first column (up to sign).
-
A377285 gives position of first zero in each row.
-
nn=30;
t=Table[Take[Differences[PartitionsQ/@Range[0,2nn],k],nn],{k,0,nn}];
Total/@Table[t[[j,i-j+1]],{i,nn/2},{j,i}]
A059797
Second in a series of arrays counting standard tableaux by partition type.
Original entry on oeis.org
2, 5, 5, 9, 16, 9, 14, 35, 35, 14, 20, 64, 90, 64, 20, 27, 105, 189, 189, 105, 27, 35, 160, 350, 448, 350, 160, 35, 44, 231, 594, 924, 924, 594, 231, 44, 54, 320, 945, 1728, 2100, 1728, 945, 320, 54, 65, 429, 1430, 3003, 4290, 4290, 3003, 1430, 429, 65
Offset: 0
a(5) = 16 because we can write T(2,2) = T(1,2) + T(1,1) + A007318(4,2) = 5 + 5 + 6.
2;
5, 5;
9, 16, 9;
14, 35, 35, 14;
20, 64, 90, 64, 20;
27, 105, 189, 189, 105, 27;
T(n,k) as a grid for the first few lattice points. Where T(0,0)=2 since there are two ways to get to (0,0) with "0+0+2" steps under the move restrictions.
k = 0 1 2 3 4 5
T(0,k) = 2 5 9 14 20 27
T(1,k) = 5 16 35 64 105 160
T(2,k) = 9 35 90 189 350 594
T(3,k) = 14 64 189 448 924 1728
T(4,k) = 20 105 350 924 2100 4290
T(5,k) = 27 160 594 1728 4290 9504
- _Juan Luis Vargas-Molina_, Mar 03 2014
- Stanton and White, Constructive Combinatorics, 1986, pp. 84, 91.
-
A059797 := proc(n,k) option remember; if n <0 or k<0 or k>n then 0; else procname(n-1,k-1)+procname(n-1,k)+binomial(n+2,k+1) ; end if; end proc:
seq(seq( A059797(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Jan 27 2011
-
t[n_, k_] /; (n < 0 || k < 0 || k > n) = 0; t[n_, k_] := t[n, k] = t[n - 1, k - 1] + t[n - 1, k] + Binomial[n + 2, k + 1]; Flatten[ Table[ t[n, k], {n, 0, 9}, {k, 0, n}]] (* Jean-François Alcover, Dec 20 2011, after R. J. Mathar *)
T[n_, k_] := (k + 1)(n + k +4) FactorialPower[k + n + 2, n]/(n! + (n + 1)!)
MatrixForm[Table[T[n, k], {n, 0, 10}, {k, 0, 10}]] (* Juan Luis Vargas-Molina, Mar 03 2014 *)
A378971
Antidiagonal-sums of absolute value of the array A378622(n,k) = n-th term of k-th differences of strict partition numbers (A000009).
Original entry on oeis.org
1, 1, 1, 5, 8, 18, 30, 47, 70, 110, 177, 309, 574, 1063, 1892, 3107, 4598, 6166, 8737, 20603, 62457, 149132, 314116, 614093, 1155968, 2176048, 4244322, 8753864, 19006756, 42472117, 95235017, 210396059, 453414950, 949510166, 1931941261, 3826650257, 7400745917
Offset: 0
Antidiagonal 4 of A378622 is (2, 0, -1, -2, -3), so a(4) = 8.
Row-sums of the triangular form of
A378622. See also:
-
A175804 is the version for partitions.
-
A293467 gives the first column (up to sign).
-
A377285 gives position of first zero in each row.
-
nn=30;
t=Table[Take[Differences[PartitionsQ/@Range[0,2nn],k],nn],{k,0,nn}];
Total/@Abs/@Table[t[[j,i-j+1]],{i,nn/2},{j,i}]
A378621
Antidiagonal-sums of absolute value of the array A175804(n,k) = n-th term of k-th differences of partition numbers (A000041).
Original entry on oeis.org
1, 1, 4, 5, 11, 16, 36, 65, 142, 285, 595, 1210, 2497, 5134, 10726, 22637, 48383, 104066, 224296, 481985, 1030299, 2188912, 4626313, 9743750, 20492711, 43114180, 90843475, 191776658, 405528200, 858384333, 1817311451, 3845500427, 8129033837, 17162815092
Offset: 0
Antidiagonal i + j = 3 of A175804 is (3, 1, 0, -1), so a(3) = 5.
These are the antidiagonal-sums of the absolute value of
A175804.
First column of the same array is
A281425.
-
nn=30;
q=Table[PartitionsP[n],{n,0,nn}];
t=Table[Sum[(-1)^(j-k)*Binomial[j,k]*q[[i+k]],{k,0,j}],{j,0,Length[q]/2},{i,Length[q]/2}]
Total/@Abs/@Table[t[[j,i-j+1]],{i,nn/2},{j,i}]
A138533
Resort the multinomial sequence A036038 by source partition as described in A126442, A129306 and A136101.
Original entry on oeis.org
1, 2, 1, 6, 3, 1, 24, 12, 4, 1, 6, 120, 60, 20, 5, 1, 30, 10, 720, 360, 120, 30, 6, 1, 180, 60, 15, 20, 90
Offset: 1
a(11) is six because the eleventh least prime signature in source format is 36 the signature for partition 2+2 the ninth partition and A036038(9) = 6.
The tables begin:
1.......2.......6.......24......120.....720....5040.....40320......362880
........1.......3.......12.......60.....360....2520.....20160......181440
................1.......4........20.....120.....840......6720.......60480
........................1........5.......30.....210......1680.......15120
.. ..............................1........6......42......336........3024
..........................................1.......7.......56.........504
..................................................1........8..........72
...........................................................1...........9
.......................................................................1
........................6........30.....180....1260....10080........90720
.................................10......60.....420.....3360........30240
...
A119712
a(n) is the smallest integer k such that the n-th (forward) difference of the partition sequence A000041 is positive from k onwards.
Original entry on oeis.org
0, 1, 6, 23, 64, 129, 222, 345, 502, 695, 924, 1193, 1502, 1853, 2246, 2687, 3172, 3705, 4286, 4917, 5600, 6333, 7118, 7957, 8848, 9797, 10800, 11861, 12978, 14153, 15386, 16681, 18034, 19447, 20922, 22459, 24060, 25723, 27448, 29239, 31094, 33015
Offset: 0
- Jean-François Alcover, Table of n, a(n) for n = 0..60
- Gert Almkvist, On the differences of the partition function, Acta Arith., 61.2 (1992), 173-181.
- I. J. Good, Problem 6137, American Mathematical Monthly, 1978, pages 830-831.
- Hansraj Gupta, Finite Differences of the Partition Function, Math. Comp. 32 (1978), 1241-1243.
- A. M. Odlyzko, Differences of the partition function, Acta Arithmetica 49.3 (1988): 237-254.
- Eric Weisstein's World of Mathematics, Forward Difference.
-
with(combinat): DD:= proc(p) proc(n) option remember; p(n+1) -p(n) end end: a:= proc(n) option remember; local f, k; if n=0 then 0 else f:= (DD@@n)(numbpart); for k from a(n-1) while not (f(k)>0 and f(k+1)>0) do od; k fi end: seq(a(n), n=0..20); # Alois P. Heinz, Jul 20 2009
-
a[n_] := a[n] = Module[{f}, f[i_] = DifferenceDelta[PartitionsP[i], {i, n}]; For[j = 2, True, j++, If[f[j] > 0 && f[j+1] > 0, Return[j]]]];
a[0] = 0; a[1] = 1;
Table[Print[n, " ", a[n]]; a[n], {n, 0, 60}] (* Jean-François Alcover, Dec 04 2020 *)
A155861
a(n) is the smallest integer k such that the n-th (backward) difference of the partition sequence A000041 is positive from k onwards.
Original entry on oeis.org
1, 2, 8, 26, 68, 134, 228, 352, 510, 704, 934, 1204, 1514, 1866, 2260, 2702, 3188, 3722, 4304, 4936, 5620, 6354, 7140, 7980, 8872, 9822, 10826, 11888, 13006, 14182, 15416, 16712, 18066, 19480, 20956, 22494, 24096, 25760, 27486, 29278, 31134
Offset: 0
- Jean-François Alcover, Table of n, a(n) for n = 0..60
- Gert Almkvist, On the differences of the partition function, Acta Arith., 61.2 (1992), 173-181.
- Hansraj Gupta, Finite Differences of the Partition Function, Math. Comp. 32 (1978), 1241-1243.
- Charles Knessl, Asymptotic Behavior of High-Order Differences of the Partition Function, Communications on Pure and Applied Mathematics, 44 (1991), 1033-1045.
- A. M. Odlyzko, Differences of the partition function, Acta Arith., 49 (1988), 237-254.
- Eric Weisstein's World of Mathematics, Backward Difference
-
A41:= n-> `if` (n<0, 0, combinat[numbpart](n)):
DB:= proc(p)
proc(n) option remember;
p(n) -p(n-1)
end
end:
a:= proc(n) option remember;
local f, k;
if n=0 then 1
else f:= (DB@@n)(A41);
for k from a(n-1) while not (f(k)>0 and f(k+1)>0) do od; k
fi
end:
seq(a(n), n=0..20);
-
a[n_] := a[n] = Module[{f}, f[i_] = DifferenceDelta[PartitionsP[i], {i, n}]; For[j = 2, True, j++, If[f[j] > 0 && f[j + 1] > 0, Return[j + n]]]];
a[0] = 1; a[1] = 2;
Table[Print[n, " ", a[n]]; a[n], {n, 0, 60}] (* Jean-François Alcover, Dec 04 2020 *)
A091307
a(n)=6*2^n+4 (Bode Number A003461(n+2)) except for a(1)=6.
Original entry on oeis.org
6, 28, 52, 100, 196, 388, 772, 1540, 3076, 6148, 12292, 24580, 49156, 98308, 196612, 393220, 786436, 1572868, 3145732, 6291460, 12582916, 25165828, 50331652, 100663300, 201326596, 402653188, 805306372, 1610612740, 3221225476, 6442450948, 12884901892
Offset: 1
a(3) = 52 because we can write 52 = 2*28 - 4.
-
CoefficientList[Series[2x (3+5x-10x^2)/((1-x)(1-2x)),{x,0,30}],x] (* or *) LinearRecurrence[{3,-2},{0,6,28,52},40] (* Harvey P. Dale, Sep 01 2021 *)
Original entry on oeis.org
0, 1, 1, 1, 3, 3, 4, 8, 10, 13, 22, 28, 39, 58, 77, 104, 148, 197, 265, 363, 481, 638, 858, 1126, 1480, 1953, 2544, 3309, 4312, 5566, 7175, 9246, 11843, 15136, 19328, 24564, 31158, 39466, 49811, 62737, 78900, 98931, 123817, 154707, 192830, 239911, 298013
Offset: 1
A160644 begins 1, 1, 2, 3, 4, 7, 10, 14, 22, 32, 45, 67, 95, 134, 192, ... so a(n) begins 0, 1, 1, 1, 3, 3, 4, 8, 10, 13, 22, 28, 39, 58, ...
A160648
Second differences of sequence A160644.
Original entry on oeis.org
0, 1, 0, 0, 2, 0, 1, 4, 2, 3, 9, 6, 11, 19, 19, 27, 44, 49, 68, 98, 118, 157, 220, 268, 354, 473, 591, 765, 1003, 1254, 1609, 2071, 2597, 3293, 4192, 5236, 6594, 8308, 10345, 12926, 16163, 20031, 24886, 30890, 38123, 47081, 58102, 71381, 87704, 107643
Offset: 1
a(n) begins 0 1 0 0 2 0 1 4 2 3 9 ... and counts 222; 444,3333;
666,5553,444433,333333; 5555,44444; 6664,55543,444433;
888,6666,7773,55554,66633,444444,555333,4443333,33333333; ...
Comments