cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 45 results. Next

A378970 Antidiagonal-sums of the array A378622(n,k) = n-th term of k-th differences of strict partition numbers (A000009).

Original entry on oeis.org

1, 1, 1, 5, -4, 18, -20, 47, -56, 110, -153, 309, -532, 1045, -1768, 2855, -3620, 2928, 2927, -20371, 62261, -148774, 314112, -613835, 1155936, -2175658, 4244218, -8753316, 19006746, -42471491, 95234915, -210395017, 453414314, -949507878, 1931940045
Offset: 0

Views

Author

Gus Wiseman, Dec 14 2024

Keywords

Examples

			Antidiagonal 4 of A378622 is (2, 0, -1, -2, -3), so a(4) = -4.
		

Crossrefs

For primes we have A140119 or A376683, absolute value A376681 or A376684.
For composites we have A377034, absolute value A377035.
For squarefree numbers we have A377039, absolute value A377040.
For nonsquarefree numbers we have A377047, absolute value A377048.
For prime powers we have A377052, absolute value A377053.
For partition numbers we have A377056, absolute value A378621.
Row-sums of the triangular form of A378622. See also:
- A175804 is the version for partitions.
- A293467 gives the first column (up to sign).
- A377285 gives position of first zero in each row.
The unsigned version is A378971.
A000009 counts strict integer partitions, differences A087897, A378972.
A000041 counts integer partitions, differences A002865, A053445.

Programs

  • Mathematica
    nn=30;
    t=Table[Take[Differences[PartitionsQ/@Range[0,2nn],k],nn],{k,0,nn}];
    Total/@Table[t[[j,i-j+1]],{i,nn/2},{j,i}]

A059797 Second in a series of arrays counting standard tableaux by partition type.

Original entry on oeis.org

2, 5, 5, 9, 16, 9, 14, 35, 35, 14, 20, 64, 90, 64, 20, 27, 105, 189, 189, 105, 27, 35, 160, 350, 448, 350, 160, 35, 44, 231, 594, 924, 924, 594, 231, 44, 54, 320, 945, 1728, 2100, 1728, 945, 320, 54, 65, 429, 1430, 3003, 4290, 4290, 3003, 1430, 429, 65
Offset: 0

Views

Author

Alford Arnold, Feb 22 2001

Keywords

Comments

The first array in the series is Pascal's triangle, A007318. The initial partition for each subsequent array in the series is chosen as described in A053445. When cells are squared, as in A008459, row sums yield 1, 2, 6, 24, ... (A000142). E.g., (1 + 16 + 36 + 16 + 1) + (25 + 25) = 70 + 50 = 120 using row five from A007318 and row two from this array.
Number of lattice paths from (0,0) to (n,k) in exactly n+k+2 steps. Moves allowed: (0,1), (0,-1), (-1,0) and (1,0). Paths must stay in Quadrant I but may touch the axes. - Juan Luis Vargas-Molina, Mar 03 2014

Examples

			a(5) = 16 because we can write T(2,2) = T(1,2) + T(1,1) + A007318(4,2) = 5 + 5 + 6.
   2;
   5,   5;
   9,  16,   9;
  14,  35,  35,  14;
  20,  64,  90,  64,  20;
  27, 105, 189, 189, 105,  27;
T(n,k) as a grid for the first few lattice points. Where T(0,0)=2 since there are two ways to get to (0,0) with "0+0+2" steps under the move restrictions.
     k = 0  1   2   3    4    5
T(0,k) = 2  5   9   14   20   27
T(1,k) = 5  16  35  64   105  160
T(2,k) = 9  35  90  189  350  594
T(3,k) = 14 64  189 448  924  1728
T(4,k) = 20 105 350 924  2100 4290
T(5,k) = 27 160 594 1728 4290 9504
- _Juan Luis Vargas-Molina_, Mar 03 2014
		

References

  • Stanton and White, Constructive Combinatorics, 1986, pp. 84, 91.

Crossrefs

Programs

  • Maple
    A059797 := proc(n,k) option remember; if n <0 or k<0 or k>n then 0; else procname(n-1,k-1)+procname(n-1,k)+binomial(n+2,k+1) ; end if; end proc:
    seq(seq( A059797(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Jan 27 2011
  • Mathematica
    t[n_, k_] /; (n < 0 || k < 0 || k > n) = 0; t[n_, k_] := t[n, k] = t[n - 1, k - 1] + t[n - 1, k] + Binomial[n + 2, k + 1]; Flatten[ Table[ t[n, k], {n, 0, 9}, {k, 0, n}]] (* Jean-François Alcover, Dec 20 2011, after R. J. Mathar *)
    T[n_, k_] := (k + 1)(n + k +4) FactorialPower[k + n + 2, n]/(n! + (n + 1)!)
    MatrixForm[Table[T[n, k], {n, 0, 10}, {k, 0, 10}]] (* Juan Luis Vargas-Molina, Mar 03 2014 *)

Formula

T(row, col) = T(row-1, col-1) + T(row-1, col) + A007318(row+2, col+1). - Corrected by R. J. Mathar, Jan 27 2011
T(n,k) = (k+1)(n+k+4)FallingFactorial(n+k+2,n)/((n+1)!+n!) n,k >= 0. - Juan Luis Vargas-Molina, Mar 03 2014

A378971 Antidiagonal-sums of absolute value of the array A378622(n,k) = n-th term of k-th differences of strict partition numbers (A000009).

Original entry on oeis.org

1, 1, 1, 5, 8, 18, 30, 47, 70, 110, 177, 309, 574, 1063, 1892, 3107, 4598, 6166, 8737, 20603, 62457, 149132, 314116, 614093, 1155968, 2176048, 4244322, 8753864, 19006756, 42472117, 95235017, 210396059, 453414950, 949510166, 1931941261, 3826650257, 7400745917
Offset: 0

Views

Author

Gus Wiseman, Dec 14 2024

Keywords

Examples

			Antidiagonal 4 of A378622 is (2, 0, -1, -2, -3), so a(4) = 8.
		

Crossrefs

For primes we have A376681 or A376684, signed version A140119 or A376683.
For composites we have A377035, signed version A377034.
For squarefree numbers we have A377040, signed version A377039.
For nonsquarefree numbers we have A377048, signed version A377049.
For prime powers we have A377053, signed version A377052.
For partition numbers we have A378621, signed version A377056.
Row-sums of the triangular form of A378622. See also:
- A175804 is the version for partitions.
- A293467 gives the first column (up to sign).
- A377285 gives position of first zero in each row.
The signed version is A378970.
A000009 counts strict integer partitions, differences A087897, A378972.
A000041 counts integer partitions, differences A002865, A053445.

Programs

  • Mathematica
    nn=30;
    t=Table[Take[Differences[PartitionsQ/@Range[0,2nn],k],nn],{k,0,nn}];
    Total/@Abs/@Table[t[[j,i-j+1]],{i,nn/2},{j,i}]

A378621 Antidiagonal-sums of absolute value of the array A175804(n,k) = n-th term of k-th differences of partition numbers (A000041).

Original entry on oeis.org

1, 1, 4, 5, 11, 16, 36, 65, 142, 285, 595, 1210, 2497, 5134, 10726, 22637, 48383, 104066, 224296, 481985, 1030299, 2188912, 4626313, 9743750, 20492711, 43114180, 90843475, 191776658, 405528200, 858384333, 1817311451, 3845500427, 8129033837, 17162815092
Offset: 0

Views

Author

Gus Wiseman, Dec 14 2024

Keywords

Examples

			Antidiagonal i + j = 3 of A175804 is (3, 1, 0, -1), so a(3) = 5.
		

Crossrefs

These are the antidiagonal-sums of the absolute value of A175804.
First column of the same array is A281425.
For primes we have A376681 or A376684, signed A140119 or A376683.
For composites we have A377035, signed A377034.
For squarefree numbers we have A377040, signed A377039.
For nonsquarefree numbers we have A377048, signed A377049.
For prime powers we have A377053, signed A377052.
The signed version is A377056.
The corresponding array for strict partitions is A378622, see A293467, A377285, A378971, A378970.
A000009 counts strict integer partitions, differences A087897, A378972.
A000041 counts integer partitions, differences A002865, A053445.

Programs

  • Mathematica
    nn=30;
    q=Table[PartitionsP[n],{n,0,nn}];
    t=Table[Sum[(-1)^(j-k)*Binomial[j,k]*q[[i+k]],{k,0,j}],{j,0,Length[q]/2},{i,Length[q]/2}]
    Total/@Abs/@Table[t[[j,i-j+1]],{i,nn/2},{j,i}]

A138533 Resort the multinomial sequence A036038 by source partition as described in A126442, A129306 and A136101.

Original entry on oeis.org

1, 2, 1, 6, 3, 1, 24, 12, 4, 1, 6, 120, 60, 20, 5, 1, 30, 10, 720, 360, 120, 30, 6, 1, 180, 60, 15, 20, 90
Offset: 1

Views

Author

Alford Arnold, Mar 27 2008

Keywords

Comments

Multinomials count permutations of multisets and also paths in lattices; for example, there are six paths (from null to full) through the lattice of divisors for signature 36: 2233 2323 2332 3223 3232 and 3322.

Examples

			a(11) is six because the eleventh least prime signature in source format is 36 the signature for partition 2+2 the ninth partition and A036038(9) = 6.
The tables begin:
1.......2.......6.......24......120.....720....5040.....40320......362880
........1.......3.......12.......60.....360....2520.....20160......181440
................1.......4........20.....120.....840......6720.......60480
........................1........5.......30.....210......1680.......15120
.. ..............................1........6......42......336........3024
..........................................1.......7.......56.........504
..................................................1........8..........72
...........................................................1...........9
.......................................................................1
........................6........30.....180....1260....10080........90720
.................................10......60.....420.....3360........30240
...
		

Crossrefs

Cf. A173333. [From Reinhard Zumkeller, Feb 19 2010]

A119712 a(n) is the smallest integer k such that the n-th (forward) difference of the partition sequence A000041 is positive from k onwards.

Original entry on oeis.org

0, 1, 6, 23, 64, 129, 222, 345, 502, 695, 924, 1193, 1502, 1853, 2246, 2687, 3172, 3705, 4286, 4917, 5600, 6333, 7118, 7957, 8848, 9797, 10800, 11861, 12978, 14153, 15386, 16681, 18034, 19447, 20922, 22459, 24060, 25723, 27448, 29239, 31094, 33015
Offset: 0

Views

Author

Moshe Shmuel Newman, Jun 11 2006

Keywords

Comments

The first entry is considered to be indexed by zero. For example, the third difference A072380 starts with -1,1 and continues alternating in sign till the 24th entry, from which point it is positive.
Using a different (backward) definition of the difference operator, this sequence has also been given as 1, 8, 26, 68, 134, 228, 352, ... A155861.

Crossrefs

Programs

  • Maple
    with(combinat): DD:= proc(p) proc(n) option remember; p(n+1) -p(n) end end: a:= proc(n) option remember; local f, k; if n=0 then 0 else f:= (DD@@n)(numbpart); for k from a(n-1) while not (f(k)>0 and f(k+1)>0) do od; k fi end: seq(a(n), n=0..20); # Alois P. Heinz, Jul 20 2009
  • Mathematica
    a[n_] := a[n] = Module[{f}, f[i_] = DifferenceDelta[PartitionsP[i], {i, n}]; For[j = 2, True, j++, If[f[j] > 0 && f[j+1] > 0, Return[j]]]];
    a[0] = 0; a[1] = 1;
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 60}] (* Jean-François Alcover, Dec 04 2020 *)

Formula

Odlyzko gives an asymptotic formula a(n)~(6/(Pi)^2) * (n log n)^2

Extensions

a(11)-a(41) from Alois P. Heinz, Jul 20 2009

A155861 a(n) is the smallest integer k such that the n-th (backward) difference of the partition sequence A000041 is positive from k onwards.

Original entry on oeis.org

1, 2, 8, 26, 68, 134, 228, 352, 510, 704, 934, 1204, 1514, 1866, 2260, 2702, 3188, 3722, 4304, 4936, 5620, 6354, 7140, 7980, 8872, 9822, 10826, 11888, 13006, 14182, 15416, 16712, 18066, 19480, 20956, 22494, 24096, 25760, 27486, 29278, 31134
Offset: 0

Views

Author

Alois P. Heinz, Dec 16 2010

Keywords

Comments

Using a different (forward) definition of the difference operator, this sequence has also been given as 0, 1, 6, 23, 64, 129, 222, ... A119712.

Crossrefs

Programs

  • Maple
    A41:= n-> `if` (n<0, 0, combinat[numbpart](n)):
    DB:= proc(p)
           proc(n) option remember;
             p(n) -p(n-1)
           end
         end:
    a:= proc(n) option remember;
          local f, k;
          if n=0 then 1
                 else f:= (DB@@n)(A41);
                 for k from a(n-1) while not (f(k)>0 and f(k+1)>0) do od; k
          fi
        end:
    seq(a(n), n=0..20);
  • Mathematica
    a[n_] := a[n] = Module[{f}, f[i_] = DifferenceDelta[PartitionsP[i], {i, n}]; For[j = 2, True, j++, If[f[j] > 0 && f[j + 1] > 0, Return[j + n]]]];
    a[0] = 1; a[1] = 2;
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 60}] (* Jean-François Alcover, Dec 04 2020 *)

Formula

An asymptotic formula is a(n) ~ 6/Pi^2 * n^2 (log n)^2.

A091307 a(n)=6*2^n+4 (Bode Number A003461(n+2)) except for a(1)=6.

Original entry on oeis.org

6, 28, 52, 100, 196, 388, 772, 1540, 3076, 6148, 12292, 24580, 49156, 98308, 196612, 393220, 786436, 1572868, 3145732, 6291460, 12582916, 25165828, 50331652, 100663300, 201326596, 402653188, 805306372, 1610612740, 3221225476, 6442450948, 12884901892
Offset: 1

Views

Author

Alford Arnold, Feb 21 2004

Keywords

Comments

Sequence similar to Bode Numbers relevant to A079946 and numeric partitions.
A053445 describes certain partitions which start triangular arrays of all other numeric partitions; e.g. - 22, 33, 222, 44, 332, 2222, ... A079946 provides the indices for these partitions. (cf. A090324 and A090774).
By expanding the terms of a(n) in a similar manner, the vertex partitions can be readily indexed by noting that the indices increase by eight as follows: 6 28 (one case), 52 60 (two cases), 100 108 116 124 (four cases), 196 204 212 220 228 236 244 252 (eight cases), 388 ...

Examples

			a(3) = 52 because we can write 52 = 2*28 - 4.
		

Crossrefs

Except for initial term, same as A003461(n+2). Cf. A053445, A079946, A090774.

Programs

  • Mathematica
    CoefficientList[Series[2x (3+5x-10x^2)/((1-x)(1-2x)),{x,0,30}],x] (* or *) LinearRecurrence[{3,-2},{0,6,28,52},40] (* Harvey P. Dale, Sep 01 2021 *)

Formula

a(1) = 6, a(2) = 28, a(n) = 2*a(n-1) - 4 for n > 2.
G.f.: 2*x*(3+5*x-10*x^2)/((1-x)*(1-2*x)). - Colin Barker, Mar 12 2012

Extensions

Edited by M. F. Hasler, Apr 07 2009

A160646 First differences of A160644.

Original entry on oeis.org

0, 1, 1, 1, 3, 3, 4, 8, 10, 13, 22, 28, 39, 58, 77, 104, 148, 197, 265, 363, 481, 638, 858, 1126, 1480, 1953, 2544, 3309, 4312, 5566, 7175, 9246, 11843, 15136, 19328, 24564, 31158, 39466, 49811, 62737, 78900, 98931, 123817, 154707, 192830, 239911, 298013
Offset: 1

Views

Author

Alford Arnold, May 24 2009

Keywords

Comments

Second differences count a subset of unrestricted partitions; cf. A160648.

Examples

			A160644 begins 1, 1, 2, 3, 4, 7, 10, 14, 22, 32, 45, 67, 95, 134, 192, ... so a(n) begins 0, 1, 1, 1, 3, 3, 4, 8, 10, 13, 22, 28, 39, 58, ...
		

Crossrefs

A160648 Second differences of sequence A160644.

Original entry on oeis.org

0, 1, 0, 0, 2, 0, 1, 4, 2, 3, 9, 6, 11, 19, 19, 27, 44, 49, 68, 98, 118, 157, 220, 268, 354, 473, 591, 765, 1003, 1254, 1609, 2071, 2597, 3293, 4192, 5236, 6594, 8308, 10345, 12926, 16163, 20031, 24886, 30890, 38123, 47081, 58102, 71381, 87704, 107643
Offset: 1

Views

Author

Alford Arnold, May 25 2009

Keywords

Comments

A160644 bisects sequence A053445 which counts unrestricted partitions such that the two largest values match and that no part is less than two.
Conjecture: a(n) counts unrestricted partitions of even numbers such that
the three largest values match and that, after "222", no part is less than three.

Examples

			a(n) begins 0 1 0 0 2 0 1 4 2 3 9 ... and counts 222; 444,3333;
666,5553,444433,333333; 5555,44444; 6664,55543,444433;
888,6666,7773,55554,66633,444444,555333,4443333,33333333; ...
		

Crossrefs

Previous Showing 31-40 of 45 results. Next