cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A348312 a(n) = n! * Sum_{k=0..n-1} 3^k / k!.

Original entry on oeis.org

0, 1, 8, 51, 312, 1965, 13248, 97839, 800208, 7260921, 72806040, 801515979, 9620317512, 125071036389, 1751016829968, 26265324194055, 420245416687392, 7144172815479921, 128595113003161512, 2443307154421058019, 48866143111666389720, 1026189005418216656541, 22576158119430894214368
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! Sum[3^k/k!, {k, 0, n - 1}], {n, 0, 22}]
    nmax = 22; CoefficientList[Series[x Exp[3 x]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    a(n) = n!*sum(k=0, n-1, 3^k/k!); \\ Michel Marcus, Oct 11 2021

Formula

E.g.f.: x * exp(3*x) / (1 - x).
a(0) = 0; a(n) = n * (a(n-1) + 3^(n-1)).
a(n) ~ exp(3)*n!. - Stefano Spezia, Oct 11 2021

A134558 Array read by antidiagonals, a(n,k) = gamma(n+1,k)*e^k, where gamma(n,k) is the upper incomplete gamma function and e is the exponential constant 2.71828...

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 6, 5, 3, 1, 24, 16, 10, 4, 1, 120, 65, 38, 17, 5, 1, 720, 326, 168, 78, 26, 6, 1, 5040, 1957, 872, 393, 142, 37, 7, 1, 40320, 13700, 5296, 2208, 824, 236, 50, 8, 1, 362880, 109601, 37200, 13977, 5144, 1569, 366, 65, 9, 1, 3628800, 986410, 297856
Offset: 0

Views

Author

Ross La Haye, Jan 22 2008

Keywords

Examples

			Square array begins:
    1,    1,    1,     1,     1,     1,      1, ...
    1,    2,    3,     4,     5,     6,      7, ...
    2,    5,   10,    17,    26,    37,     50, ...
    6,   16,   38,    78,   142,   236,    366, ...
   24,   65,  168,   393,   824,  1569,   2760, ...
  120,  326,  872,  2208,  5144, 10970,  21576, ...
  720, 1957, 5296, 13977, 34960, 81445, 176112, ...
		

Crossrefs

Cf. a(n, 0) = A000142(n); a(n, 1) = A000522(n); a(n, 2) = A010842(n); a(n, 3) = A053486(n); a(n, 4) = A053487(n); a(n, 5) = A080954(n); a(n, 6) = A108869(n); a(1, k) = A000027(k+1); a(2, k) = A002522(k+1); a(n, n) = A063170(n); a(n, n+1) = A001865(n+1); a(n, n+2) = A001863(n+2).
Another version: A089258.
A transposed version: A080955.
Cf. A001113.

Programs

  • Mathematica
    T[n_,k_] := Gamma[n+1, k]*E^k; Table[T[n-k, k], {n, 0, 10}, {k, 0, n}] //Flatten (* Amiram Eldar, Jun 27 2020 *)

Formula

a(n,k) = gamma(n+1,k)*e^k = Sum_{m=0..n} m!*binomial(n,m)*k^(n-m).
a(n,k) = n*a(n-1,k) + k^n for n,k > 0.
E.g.f. (by columns) is e^(kx)/(1-x).
a(n,k) = the binomial transform by columns of a(n,k-1).
Conjecture: a(n,k) is the permanent of the n X n matrix with k+1 on the main diagonal and 1 elsewhere.

Extensions

More terms from Amiram Eldar, Jun 27 2020

A295519 a(n) = e^3 * Sum_{k=0..n-1} Gamma(k + 1, 3).

Original entry on oeis.org

0, 1, 5, 22, 100, 493, 2701, 16678, 116704, 923473, 8204077, 81069166, 882762292, 10503611245, 135576241957, 1886597854894, 28151936397856, 448397396131969, 7592570340752053, 136187683731334054, 2579494839314653540, 51445637954467827661
Offset: 0

Views

Author

Peter Luschny, Dec 17 2017

Keywords

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n=0 then 0 elif n=1 then 1 elif n=2 then 5 else
    (3*n-6)*a(n-3)+(4-4*n)*a(n-2)+(3+n)*a(n-1) fi end: seq(a(n), n=0..21);
  • Mathematica
    a[n_] := E^3 Sum[Gamma[k + 1, 3], {k, 0, n - 1}]; Table[a[n], {n, 0, 21}]
  • PARI
    a=vector(1000); a[1]=1;a[2]=5;a[3]=22;for(n=4, #a, a[n] = (n+3)*a[n-1]+(4-4*n)*a[n-2]+(3*n-6)*a[n-3]); va=concat(0, vector(1000, n, a[n])) \\ Altug Alkan, Dec 17 2017

Formula

a(n) = (3*n-6)*a(n-3)+(4-4*n)*a(n-2)+(3+n)*a(n-1) for n >= 3.
E.g.f.: exp(x+2)*(Ei(1,2-2*x)-Ei(1,2)). - Robert Israel, Dec 17 2017
Previous Showing 21-23 of 23 results.