A343687
a(0) = 1; a(n) = 4 * n * a(n-1) + Sum_{k=0..n-1} binomial(n,k) * (n-k-1)! * a(k).
Original entry on oeis.org
1, 5, 51, 782, 15992, 408814, 12541010, 448834728, 18358297416, 844755218400, 43190363326992, 2429044756967520, 149029669269441456, 9905401062535389072, 709016063545908259248, 54375505616232613595904, 4448148376192382963462400, 386619861956492109750650496, 35580548688887294090357622912
Offset: 0
-
a[0] = 1; a[n_] := a[n] = 4 n a[n - 1] + Sum[Binomial[n, k] (n - k - 1)! a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 18}]
nmax = 18; CoefficientList[Series[1/(1 - 4 x + Log[1 - x]), {x, 0, nmax}], x] Range[0, nmax]!
A348314
a(n) = n! * Sum_{k=0..n-1} 4^k / k!.
Original entry on oeis.org
0, 1, 10, 78, 568, 4120, 30864, 244720, 2088832, 19389312, 196514560, 2173194496, 26128665600, 339890756608, 4759410116608, 71395178280960, 1142340032364544, 19419853564641280, 349557673401188352, 6641597100292636672, 132831947503410872320, 2789470920661372502016
Offset: 0
-
Table[n! Sum[4^k/k!, {k, 0, n - 1}], {n, 0, 21}]
nmax = 21; CoefficientList[Series[x Exp[4 x]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
-
a(n) = n!*sum(k=0, n-1, 4^k/k!); \\ Michel Marcus, Oct 11 2021
A134558
Array read by antidiagonals, a(n,k) = gamma(n+1,k)*e^k, where gamma(n,k) is the upper incomplete gamma function and e is the exponential constant 2.71828...
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 6, 5, 3, 1, 24, 16, 10, 4, 1, 120, 65, 38, 17, 5, 1, 720, 326, 168, 78, 26, 6, 1, 5040, 1957, 872, 393, 142, 37, 7, 1, 40320, 13700, 5296, 2208, 824, 236, 50, 8, 1, 362880, 109601, 37200, 13977, 5144, 1569, 366, 65, 9, 1, 3628800, 986410, 297856
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
2, 5, 10, 17, 26, 37, 50, ...
6, 16, 38, 78, 142, 236, 366, ...
24, 65, 168, 393, 824, 1569, 2760, ...
120, 326, 872, 2208, 5144, 10970, 21576, ...
720, 1957, 5296, 13977, 34960, 81445, 176112, ...
Cf. a(n, 0) =
A000142(n); a(n, 1) =
A000522(n); a(n, 2) =
A010842(n); a(n, 3) =
A053486(n); a(n, 4) =
A053487(n); a(n, 5) =
A080954(n); a(n, 6) =
A108869(n); a(1, k) =
A000027(k+1); a(2, k) =
A002522(k+1); a(n, n) =
A063170(n); a(n, n+1) =
A001865(n+1); a(n, n+2) =
A001863(n+2).
-
T[n_,k_] := Gamma[n+1, k]*E^k; Table[T[n-k, k], {n, 0, 10}, {k, 0, n}] //Flatten (* Amiram Eldar, Jun 27 2020 *)