cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A065202 Characteristic function of A065201: a(n) = if A065201(k) = n for some k then 1 else 0.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 21 2001

Keywords

Crossrefs

Programs

Formula

a(A065200(n)) = 0 and a(A065201(n)) = 1.
a(n) = A107078(A051119(n)). - Antti Karttunen, Aug 27 2017

Extensions

Edited by Franklin T. Adams-Watters, Oct 27 2006

A309243 Completely multiplicative with a(p) = p * a(p-1) for any prime number p.

Original entry on oeis.org

1, 2, 6, 4, 20, 12, 84, 8, 36, 40, 440, 24, 312, 168, 120, 16, 272, 72, 1368, 80, 504, 880, 20240, 48, 400, 624, 216, 336, 9744, 240, 7440, 32, 2640, 544, 1680, 144, 5328, 2736, 1872, 160, 6560, 1008, 43344, 1760, 720, 40480, 1902560, 96, 7056, 800, 1632, 1248
Offset: 1

Views

Author

Rémy Sigrist, Jul 17 2019

Keywords

Comments

All terms are distinct and belong to A064522.

Examples

			a(2) = 2 * a(1) = 2.
a(5) = 5 * a(4) = 5 * a(2)^2 = 5 * 2^2 = 20.
		

Crossrefs

Programs

  • PARI
    a(n) = my (f=factor(n), p=f[,1]~, e=f[,2]~); prod (i=1, #p, (p[i] * a(p[i] - 1))^e[i])

Formula

a(n) >= n with equality iff n is a power of 2.
a(n) is a multiple of n.
a(n) is a multiple of A000010(n).
A006530(a(n)) = A006530(n).
A053585(a(n)) = A053585(n).
Apparently, A007814(a(n)) = A064415(n).

A387406 Numbers k such that sigma(A253560(k)) / A253560(k) is equal to (sigma(k)+1) / k, where A253560(k) = k multiplied by its largest prime factor.

Original entry on oeis.org

6, 18, 28, 54, 117, 162, 196, 486, 496, 775, 1372, 1458, 1521, 4374, 8128, 9604, 13122, 15376, 19773, 24025, 39366, 67228, 88723, 118098, 257049, 354294, 470596, 476656, 744775, 796797, 1032256, 1062882, 2896363, 3188646, 3294172, 3341637, 6725201, 9565938, 12326221, 14776336, 23059204, 23088025, 25774633, 27237961
Offset: 1

Views

Author

Antti Karttunen, Aug 30 2025

Keywords

Comments

Terms k for which sigma(k/A053585(k)) = A006530(k). This further entails that A001221(k) = 2 [See A023194].

Crossrefs

Subsequences: A000396 (even terms only), A240991 (conjectured, if true, then A000396 has only even terms).

Programs

  • Mathematica
    fk[k_]:=k*FactorInteger[k][[-1,1]];Select[Range[10^6],DivisorSigma[1,fk[#]]/fk[#]==(DivisorSigma[1,#]+1)/#&] (* James C. McMahon, Aug 31 2025 *)
  • PARI
    A253560(n) = if (n==1, 1, n*vecmax(factor(n)[, 1]));
    isA387406(n) = { my(x=A253560(n)); ((sigma(x)/x) == ((sigma(n)+1)/n)); };

A304180 If n = Product (p_j^k_j) then a(n) = max{p_j}^max{k_j}.

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 7, 8, 9, 5, 11, 9, 13, 7, 5, 16, 17, 9, 19, 25, 7, 11, 23, 27, 25, 13, 27, 49, 29, 5, 31, 32, 11, 17, 7, 9, 37, 19, 13, 125, 41, 7, 43, 121, 25, 23, 47, 81, 49, 25, 17, 169, 53, 27, 11, 343, 19, 29, 59, 25, 61, 31, 49, 64, 13, 11, 67, 289, 23, 7, 71, 27, 73, 37, 25
Offset: 1

Views

Author

Ilya Gutkovskiy, May 07 2018

Keywords

Examples

			a(40) = 125 because 40 = 2^3*5^1, max{2,5} = 5, max{3,1} = 3 and 5^3 = 125.
		

Crossrefs

Programs

  • Mathematica
    Table[(FactorInteger[n][[-1, 1]])^(Max @@ Last /@ FactorInteger[n]), {n, 75}]
  • PARI
    a(n) = if(n == 1, 1, my(f = factor(n), p = f[, 1], e = f[, 2]); vecmax(p)^vecmax(e)); \\ Amiram Eldar, Sep 08 2024

Formula

a(n) = A006530(n)^A051903(n).
a(p^k) = p^k where p is a prime.
a(A005117(k)) = A073482(k).
a(A002110(k)) = A000040(k).

A323129 a(1) = 1, and for any n > 1, let p be the greatest prime factor of n, and e be its exponent, then a(n) = p^a(e).

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 7, 8, 9, 5, 11, 3, 13, 7, 5, 16, 17, 9, 19, 5, 7, 11, 23, 3, 25, 13, 27, 7, 29, 5, 31, 32, 11, 17, 7, 9, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 3, 49, 25, 17, 13, 53, 27, 11, 7, 19, 29, 59, 5, 61, 31, 7, 8, 13, 11, 67, 17, 23, 7, 71, 9, 73
Offset: 1

Views

Author

Rémy Sigrist, Jan 05 2019

Keywords

Comments

This sequence is a recursive variant of A053585.
All terms belong to A164336.

Examples

			a(1458) = a(2 * 3^6) = 3^a(6) = 3^a(2*3) = 3^3 = 27.
		

Crossrefs

See A323130 for the variant involving the least prime factor.

Programs

  • Maple
    f:= proc(n) option remember;
      local F,t;
      F:= ifactors(n)[2];
      t:= F[max[index](map(t -> t[1],F))];
      t[1]^procname(t[2]);
    end proc:
    f(1):= 1:
    map(f, [$1..100]); # Robert Israel, Jan 07 2019
  • Mathematica
    Nest[Append[#, Last@ FactorInteger[Length[#] + 1] /. {p_, e_} :> p^#[[e]] ] &, {1}, 72] (* Michael De Vlieger, Jan 07 2019 *)
  • PARI
    a(n) = if (n==1, 1, my (f=factor(n)); f[#f~,1]^a(f[#f~,2]))

Formula

a(n) <= n with equality iff n belongs to A164336.
a(n) = A006530(n)^a(A071178(n)) for any n > 1.

A338668 a(n) is the rightmost prime number in prime tower factorization of n; a(1) = 1.

Original entry on oeis.org

1, 2, 3, 2, 5, 3, 7, 3, 2, 5, 11, 3, 13, 7, 5, 2, 17, 2, 19, 5, 7, 11, 23, 3, 2, 13, 3, 7, 29, 5, 31, 5, 11, 17, 7, 2, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 3, 2, 2, 17, 13, 53, 3, 11, 7, 19, 29, 59, 5, 61, 31, 7, 3, 13, 11, 67, 17, 23, 7, 71, 2, 73, 37, 2
Offset: 1

Views

Author

Rémy Sigrist, Apr 23 2021

Keywords

Comments

The prime tower factorization of a number is defined in A182318.

Examples

			See Links section.
		

Crossrefs

Programs

  • PARI
    a(n) = if (n==1, 1, my (f=factor(n), w=#f~); if (f[w,2]==1, f[w,1], a(f[w,2])))

Formula

a(n) <= n with equality iff n = 1 or n is a prime number.
a(n) = a(A053585(n)).

A085236 (Greatest power of greatest prime factor of n) < square root(n).

Original entry on oeis.org

12, 24, 30, 40, 45, 48, 56, 60, 63, 70, 80, 84, 90, 96, 105, 112, 120, 126, 132, 135, 140, 144, 154, 160, 165, 168, 175, 176, 180, 182, 189, 192, 195, 198, 208, 210, 220, 224, 231, 234, 240, 252, 260, 264, 270, 273, 275, 280, 286, 288, 297, 306, 308, 312
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 22 2003

Keywords

Comments

A053585(a(n))^2 < a(n).

Programs

  • Maple
    filter:= proc(n) local F,j;
      F:= ifactors(n)[2];
      j:= max[index](map(t->t[1],F));
      F[j][1]^(2*F[j][2]) < n
    end proc:
    select(filter, [$2..1000]); # Robert Israel, Nov 30 2016

A362983 Number of prime factors of n (with multiplicity) that are greater than the least.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 2, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 0, 1, 1, 1, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 1, 0, 2, 1, 1, 0, 3, 1, 1, 1, 1, 0, 2, 0, 1, 1, 0, 1, 2, 0, 1, 1, 2, 0, 2, 0, 1, 2, 1, 1, 2, 0, 1, 0, 1, 0, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, May 18 2023

Keywords

Examples

			The prime factorization of 360 is 2*2*2*3*3*5, with factors greater than the least 3*3*5, so a(360) = 3.
		

Crossrefs

Positions of 0's are A000961.
Positions of numbers > 0 are A024619.
Positions of first appearances appear to be A099856.
For "less than greatest" instead of "greater than least" we have A325226.
For multiplicities instead of parts we have A363131.
A027746 lists prime factors, A112798 indices, A124010 exponents.
A047966 counts uniform partitions, ranks A072774.
A363128 counts partitions with more than one non-mode, complement A363129.

Programs

  • Mathematica
    Table[PrimeOmega[n]-If[n==1,0,FactorInteger[n][[1,2]]],{n,30}]

Formula

a(n) = A001222(n) - A067029(n).
a(n) = A001222(A028234(n)).

A085235 (Greatest power of greatest prime factor of n) > square root(n).

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 22 2003

Keywords

Comments

A053585(a(n))^2 > a(n).
Previous Showing 21-29 of 29 results.