cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A165542 Number of permutations of length n which avoid the patterns 4231 and 4123.

Original entry on oeis.org

1, 1, 2, 6, 22, 89, 380, 1677, 7566, 34676, 160808, 752608, 3548325, 16830544, 80234659, 384132724, 1845829988, 8897740300, 43010084460, 208409687323, 1012046126532, 4923952560917, 23997719075657, 117136530812812, 572552052378494, 2802078324448067
Offset: 0

Views

Author

Vincent Vatter, Sep 21 2009

Keywords

Comments

G.f. conjectured to be non-D-finite (see Albert et al link). - Jay Pantone, Oct 01 2015

Examples

			There are 22 permutations of length 4 which avoid these two patterns, so a(4)=22.
		

Crossrefs

Extensions

More terms from David Bevan, Feb 04 2014
a(0)=1 prepended by Jay Pantone, Oct 01 2015

A165545 Number of permutations of length n which avoid the patterns 2341 and 3421.

Original entry on oeis.org

1, 1, 2, 6, 22, 89, 382, 1711, 7922, 37663, 182936, 904302, 4535994, 23034564, 118209806, 612165222, 3195359360, 16795435994, 88825567814, 472356139660, 2524292893556, 13549955878141, 73026827854516, 395017112175542, 2143881709415478, 11671226062503926
Offset: 0

Views

Author

Vincent Vatter, Sep 21 2009

Keywords

Comments

These permutations have an enumeration scheme of depth 4.
G.f. is conjectured to be non-D-finite (see Albert et al link). - Jay Pantone, Oct 01 2015

Examples

			There are 22 permutations of length 4 which avoid these two patterns, so a(4)=22.
		

Crossrefs

Extensions

a(0)=1 prepended by Jay Pantone, Oct 01 2015

A257562 Number of permutations of length n that avoid the patterns 4123, 4231, and 4312.

Original entry on oeis.org

1, 1, 2, 6, 21, 79, 310, 1251, 5150, 21517, 90921, 387595, 1663936, 7183750, 31158310, 135661904, 592558096, 2595232344, 11392504426, 50109205789, 220777103354, 974162444028, 4303957562319, 19036842605855, 84285643628790, 373502845338552, 1656428550764640, 7351106011540209, 32643855249507805, 145040974005303590, 644756480385363800
Offset: 0

Views

Author

Jay Pantone, Apr 30 2015

Keywords

Comments

G.f. conjectured to be non-D-finite (see Albert et al. link). Jay Pantone, Oct 01 2015
Unlike A061552, whose g.f. is also conjectured to be non-D-finite, thousands of terms of the counting sequence are known. - David Callan, Aug 29 2017

Examples

			a(4) = 21 because there are 24 permutations of length 4 and 3 of them do not avoid 4123, 4231, and 4312.
		

Crossrefs

A053617 Number of permutations of length n which avoid the patterns 1234 and 1324.

Original entry on oeis.org

1, 1, 2, 6, 22, 90, 396, 1837, 8864, 44074, 224352, 1163724, 6129840, 32703074, 176351644, 959658200, 5262988330, 29057961666, 161374413196, 900792925199, 5050924332096, 28434661250454, 160644331001476, 910455895039056, 5174722258676440, 29486753617569684
Offset: 0

Views

Author

Moa Apagodu, Mar 20 2000

Keywords

Comments

These permutations have an "enumeration scheme" of depth 4, see D. Zeilberger's article in the links.
G.f. conjectured to be non-D-finite (see Albert et al. link). - Jay Pantone, Oct 01 2015
a(n) is the number of permutations of length n avoiding the partially ordered pattern (POP) {1>2, 1>3, 2>4, 3>4} of length 4. That is, the number of length n permutations having no subsequences of length 4 in which the first element is the largest and the fourth element is the smallest. - Sergey Kitaev, Dec 10 2020

Crossrefs

Extensions

More terms from Andrew Baxter, May 20 2011

A061337 Smallest number of distinct triangular numbers which sum to n (or -1 if not possible).

Original entry on oeis.org

0, 1, -1, 1, 2, -1, 1, 2, -1, 2, 1, 2, -1, 2, 3, 1, 2, 3, 2, 3, 4, 1, 2, -1, 2, 2, 3, 2, 1, 2, 3, 2, 3, -1, 2, 3, 1, 2, 2, 2, 3, 3, 2, 2, 3, 1, 2, 3, 2, 2, 3, 2, 3, 3, 3, 1, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 1, 2, 3, 2, 2, 3, 2, 2, 3, 3, 2, 3, 1, 2, 3, 2, 3, 2, 2, 3, 3, 2, 2, 3, 3, 1, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 2, 3, 3, 1, 2, 3, 2, 3, 3, 2, 2, 3, 2, 2, 3, 3, 3, 2, 1, 2, 3
Offset: 0

Views

Author

Henry Bottomley, Apr 25 2001

Keywords

Comments

20 is the only case where n>3.

Examples

			a(20)=4 since 20=1+3+6+10, a(21)=1 since 21 is triangular, a(22)=2 since 22=1+21, a(23)=-1 since no combination of distinct triangular numbers sum to 23.
		

Crossrefs

A117632 Number of 1's required to build n using {+,T} and parentheses, where T(i) = i*(i+1)/2.

Original entry on oeis.org

1, 2, 2, 3, 4, 2, 3, 4, 4, 3, 4, 4, 5, 6, 4, 5, 6, 6, 7, 6, 2, 3, 4, 4, 5, 6, 4, 3, 4, 5, 5, 6, 6, 5, 6, 4, 5, 6, 6, 7, 8, 4, 5, 6, 4, 5, 6, 6, 5, 6, 6, 7, 8, 8, 3, 4, 5, 5, 6, 7, 5, 6, 6, 7, 6, 4, 5, 6, 6, 7, 8, 6, 7, 8, 8, 5, 6, 4, 5, 6, 6, 7, 6, 6, 7, 8, 6, 7, 8, 8, 5, 6, 7, 7, 8, 9, 7, 8, 6, 7, 8, 8
Offset: 1

Views

Author

Jonathan Vos Post, Apr 08 2006

Keywords

Comments

This problem has the optimal substructure property.

Examples

			a(1) = 1 because "1" has a single 1.
a(2) = 2 because "1+1" has two 1's.
a(3) = 2 because 3 = T(1+1) has two 1's.
a(6) = 2 because 6 = T(T(1+1)).
a(10) = 3 because 10 = T(T(1+1)+1).
a(12) = 4 because 12 = T(T(1+1)) + T(T(1+1)).
a(15) = 4 because 15 = T(T(1+1)+1+1).
a(21) = 2 because 21 = T(T(T(1+1))).
a(28) = 3 because 28 = T(T(T(1+1))+1).
a(55) = 3 because 55 = T(T(T(1+1)+1)).
		

References

  • W. A. Beyer, M. L. Stein and S. M. Ulam, The Notion of Complexity. Report LA-4822, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, 1971.
  • R. K. Guy, Unsolved Problems Number Theory, Sect. F26.

Crossrefs

See also A023361 = number of compositions into sums of triangular numbers, A053614 = numbers that are not the sum of triangular numbers. Iterated triangular numbers: A050536, A050542, A050548, A050909, A007501.

Programs

  • Maple
    a:= proc(n) option remember; local m; m:= floor (sqrt (n*2));
          if n<3 then n
        elif n=m*(m+1)/2 then a(m)
        else min (seq (a(i)+a(n-i), i=1..floor(n/2)))
          fi
        end:
    seq (a(n), n=1..110);  # Alois P. Heinz, Jan 05 2011
  • Mathematica
    a[n_] := a[n] = Module[{m = Floor[Sqrt[n*2]]}, If[n < 3, n, If[n == m*(m + 1)/2, a[m], Min[Table[a[i] + a[n - i], {i, 1, Floor[n/2]}]]]]];
    Array[a, 110] (* Jean-François Alcover, Jun 02 2018, from Maple *)

Extensions

I do not know how many of these entries have been proved to be minimal. - N. J. A. Sloane, Apr 15 2006
Corrected and extended by Alois P. Heinz, Jan 05 2011

A176661 Partial sums of A061262.

Original entry on oeis.org

0, 3, 15, 36, 88, 145, 236, 357, 493, 704, 896, 1122, 1531, 1862, 2229, 2635, 3146, 3653, 4539, 5176, 5948, 6669, 7540, 8492, 9594, 10660, 11887, 13079, 14720, 16341, 17737, 19118, 20619, 22351, 24143, 26070, 28012, 30413, 33024, 35575, 37997
Offset: 0

Views

Author

Jonathan Vos Post, Apr 23 2010

Keywords

Comments

Partial sums of smallest number representable as the sum of 3 triangular numbers in exactly n ways. The subsequence of triangular numbers in the partial sum begins: 3, 15, 36. The subsequence of primes in the partial sum begins: 3, 1531, 11887, 17737, 37997, 43441.

Examples

			a(13) = 0 + 3 + 12 + 21 + 52 + 57 + 91 + 121 + 136 + 211 + 192 + 226 + 409 = 1531 is prime.
		

Crossrefs

Formula

a(n) = SUM[i=0..n] A061262(i).

A334385 E.g.f.: Product_{k>=1} (1 + x^(k*(k + 1)/2) / (k*(k + 1)/2)!).

Original entry on oeis.org

1, 1, 0, 1, 4, 0, 1, 7, 0, 84, 841, 11, 0, 286, 4004, 1, 8024, 136136, 816, 7775256, 155195040, 54265, 1193830, 0, 109832360, 2749077760, 84987760, 296010, 10716746041, 310545275069, 1201800600, 2444026056820, 77016647623040, 0, 14402113079955304, 504073957798435640
Offset: 0

Views

Author

Ilya Gutkovskiy, May 11 2020

Keywords

Crossrefs

Cf. A007837, A032310, A053614 (positions of 0's), A115278, A205799.

Programs

  • Mathematica
    nmax = 35; CoefficientList[Series[Product[(1 + x^(k (k + 1)/2)/(k (k + 1)/2)!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = If[n == 0, 1, (n - 1)! Sum[DivisorSum[k, -#/(-#!)^(k/#) &, IntegerQ[Sqrt[8 # + 1]] &] a[n - k]/(n - k)!, {k, 1, n}]]; Table[a[n], {n, 0, 35}]
Previous Showing 11-18 of 18 results.