cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 70 results. Next

A378083 Nonsquarefree numbers appearing exactly twice in A377783 (least nonsquarefree number > prime(n)).

Original entry on oeis.org

4, 8, 32, 44, 104, 140, 284, 464, 572, 620, 644, 824, 860, 1232, 1292, 1304, 1484, 1700, 1724, 1880, 2084, 2132, 2240, 2312, 2384, 2660, 2732, 2804, 3392, 3464, 3560, 3920, 3932, 4004, 4220, 4244, 4424, 4640, 4724, 5012, 5444, 5480, 5504, 5660, 6092, 6200
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2024

Keywords

Comments

Warning: do not confuse with A377783.

Examples

			The terms together with their prime indices begin:
     4: {1,1}
     8: {1,1,1}
    32: {1,1,1,1,1}
    44: {1,1,5}
   104: {1,1,1,6}
   140: {1,1,3,4}
   284: {1,1,20}
   464: {1,1,1,1,10}
   572: {1,1,5,6}
   620: {1,1,3,11}
   644: {1,1,4,9}
   824: {1,1,1,27}
   860: {1,1,3,14}
  1232: {1,1,1,1,4,5}
		

Crossrefs

Subset of A377783 (union A378040, diffs A377784), restriction of A120327 (diffs A378039).
Terms appearing once are A378082.
Terms not appearing at all are A378084.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.
A071403(n) = A013928(prime(n)) counts squarefree numbers < prime(n).
A378086(n) = A057627(prime(n)) counts nonsquarefree numbers < prime(n).
Cf. A112926 (diffs A378037), opposite A112925 (diffs A378038).
Cf. A378032 (diffs A378034), restriction of A378033 (diffs A378036).

Programs

  • Mathematica
    y=Table[NestWhile[#+1&,Prime[n],SquareFreeQ[#]&],{n,1000}];
    Select[Union[y],Count[y,#]==2&]

A376342 Positions of 1's in the run-compression (A376305) of the first differences (A076259) of the squarefree numbers (A005117).

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 22, 24, 26, 28, 30, 32, 34, 36, 38, 41, 43, 45, 47, 49, 51, 54, 56, 58, 60, 62, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 124, 126, 128, 130
Offset: 1

Views

Author

Gus Wiseman, Sep 24 2024

Keywords

Comments

We define the run-compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, we can remove all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has run-compression (1,2,1).

Examples

			The sequence of squarefree numbers (A005117) is:
  1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, ...
with first differences (A076259):
  1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, ...
with run-compression (A376305):
  1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 4, 2, 1, 2, 1, ...
with ones at (A376342):
  1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 22, 24, 26, 28, 30, 32, 34, 36, 38, ...
		

Crossrefs

Before compressing we had A076259.
Positions of 1's in A376305.
The version for nonsquarefree numbers gives positions of ones in A376312.
For prime instead of squarefree numbers we have A376343.
A000040 lists the prime numbers, differences A001223.
A000961 and A246655 list prime-powers, differences A057820.
A003242 counts compressed compositions, ranks A333489.
A005117 lists squarefree numbers, differences A076259 (ones A375927).
A013929 lists nonsquarefree numbers, differences A078147.
A116861 counts partitions by compressed sum, by compressed length A116608.
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    Join@@Position[First /@ Split[Differences[Select[Range[100],SquareFreeQ]]],1]

A376594 Inflection and undulation points in the sequence of nonsquarefree numbers (A013929).

Original entry on oeis.org

5, 11, 12, 13, 17, 19, 20, 25, 33, 37, 39, 40, 41, 47, 53, 57, 62, 70, 71, 76, 81, 82, 83, 88, 92, 93, 96, 98, 103, 109, 113, 118, 123, 130, 131, 133, 137, 139, 146, 149, 154, 155, 156, 161, 165, 168, 169, 174, 179, 180, 183, 187, 188, 189, 193, 201, 211, 213
Offset: 1

Views

Author

Gus Wiseman, Oct 04 2024

Keywords

Comments

These are points at which the second differences (A376593) are zero.

Examples

			The nonsquarefree numbers (A013929) are:
  4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 48, 49, 50, 52, 54, ...
with first differences (A078147):
  4, 1, 3, 4, 2, 2, 4, 1, 2, 1, 4, 4, 4, 4, 1, 3, 1, 1, 2, 2, 2, 4, 3, 1, 4, 4, 3, ...
with first differences (A376593):
  -3, 2, 1, -2, 0, 2, -3, 1, -1, 3, 0, 0, 0, -3, 2, -2, 0, 1, 0, 0, 2, -1, -2, 3, ...
with zeros (A376594) at:
  5, 11, 12, 13, 17, 19, 20, 25, 33, 37, 39, 40, 41, 47, 53, 57, 62, 70, 71, 76, ...
		

Crossrefs

The first differences were A078147.
These are the zeros of A376593.
The complement is A376595.
A000040 lists the prime numbers, differences A001223.
A005117 lists squarefree numbers, differences A076259.
A013929 lists nonsquarefree numbers, differences A078147.
A064113 lists positions of adjacent equal prime gaps.
A114374 counts partitions into nonsquarefree numbers.
For inflections and undulations: A064113 (prime), A376602 (composite), A376588 (non-perfect-power), A376597 (prime-power), A376600 (non-prime-power).
For nonsquarefree numbers: A013929 (terms), A078147 (first differences), A376593 (second differences), A376595 (nonzero curvature).

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[100],!SquareFreeQ[#]&],2],0]

A376595 Points of nonzero curvature in the sequence of nonsquarefree numbers (A013929).

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 10, 14, 15, 16, 18, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 38, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 72, 73, 74, 75, 77, 78, 79, 80, 84, 85, 86, 87, 89, 90, 91
Offset: 1

Views

Author

Gus Wiseman, Oct 04 2024

Keywords

Comments

These are points at which the second differences (A376593) are nonzero.

Examples

			The nonsquarefree numbers (A013929) are:
  4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 48, 49, 50, 52, 54, ...
with first differences (A078147):
  4, 1, 3, 4, 2, 2, 4, 1, 2, 1, 4, 4, 4, 4, 1, 3, 1, 1, 2, 2, 2, 4, 3, 1, 4, 4, 3, ...
with first differences (A376593):
  -3, 2, 1, -2, 0, 2, -3, 1, -1, 3, 0, 0, 0, -3, 2, -2, 0, 1, 0, 0, 2, -1, -2, 3, ...
with nonzeros (A376594) at:
  1, 2, 3, 4, 6, 7, 8, 9, 10, 14, 15, 16, 18, 21, 22, 23, 24, 26, 27, 28, 29, 30, ...
		

Crossrefs

The first differences were A078147.
These are the nonzeros of A376593.
The complement is A376594.
A000040 lists the prime numbers, differences A001223.
A005117 lists squarefree numbers, differences A076259.
A013929 lists nonsquarefree numbers, differences A078147.
A114374 counts integer partitions into nonsquarefree numbers.
For points of nonzero curvature: A333214 (prime), A376603 (composite), A376589 (non-perfect-power), A376592 (squarefree), A376598 (prime-power), A376601 (non-prime-power).
For nonsquarefree numbers: A078147 (first differences), A376593 (second differences), A376594 (inflections and undulations).

Programs

  • Mathematica
    Join@@Position[Sign[Differences[Select[Range[100],!SquareFreeQ[#]&],2]],1|-1]

A377041 First term of the n-th differences of the squarefree numbers. Inverse zero-based binomial transform of A005117.

Original entry on oeis.org

1, 1, 0, 1, -3, 6, -8, 3, 22, -92, 252, -578, 1189, -2255, 3991, -6617, 10245, -14626, 18666, -19635, 12104, 13090, -69122, 171478, -332718, 552138, -798629, 982514, -901485, 116219, 2351842, -8715135, 23856206, -57926011, 130281064, -273804584, 535390333
Offset: 0

Views

Author

Gus Wiseman, Oct 18 2024

Keywords

Crossrefs

The version for primes is A007442, noncomposites A030016, composites A377036.
This is the first column of A377038.
For nonsquarefree numbers we have A377049.
For prime-powers we have A377054.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers, complement A013929 (differences A078147).
A073576 counts integer partitions into squarefree numbers, factorizations A050320.
A377042 gives first position of 0 in each row of A377038.

Programs

  • Mathematica
    q=Select[Range[100],SquareFreeQ];
    t=Table[Sum[(-1)^(j-k)*Binomial[j,k]*q[[1+k]],{k,0,j}],{j,0,Length[q]/2}]

Formula

The inverse zero-based binomial transform of a sequence (q(0), q(1), q(2), ...) is the sequence p given by:
p(j) = sum_{k=0..j} (-1)^(j-k) binomial(j,k) q(k)

A378087 First-differences of A067535 (least positive integer >= n that is squarefree).

Original entry on oeis.org

1, 1, 2, 0, 1, 1, 3, 0, 0, 1, 2, 0, 1, 1, 2, 0, 2, 0, 2, 0, 1, 1, 3, 0, 0, 3, 0, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 3, 0, 0, 1, 4, 0, 0, 0, 2, 0, 2, 0, 2, 0, 1, 1, 2, 0, 1, 3, 0, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 3, 0, 0, 1, 1, 3, 0, 0, 1, 2, 0, 1, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2024

Keywords

Comments

Does this contain all nonnegative integers? The positions of first appearances begin: 4, 1, 3, 7, 47, 241, 843, 22019, 217069, ...

Crossrefs

Ones are A007674.
Zeros are A013929, complement A005117.
Positions of first appearances are A020754 (except first term) = A045882 - 1.
First-differences of A067535.
Twos are A280892.
For prime-powers we have A377780, differences of A000015.
The nonsquarefree opposite is A378036, differences of A378033.
The restriction to primes + 1 is A378037 (opposite A378038), differences of A112926.
For nonsquarefree numbers we have A378039, see A377783, A377784, A378040.
The opposite is A378085, differences of A070321.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.

Programs

  • Mathematica
    Differences[Table[NestWhile[#+1&,n,#>1&&!SquareFreeQ[#]&],{n,100}]]

A376655 Sorted positions of first appearances in the second differences of consecutive squarefree numbers (A005117).

Original entry on oeis.org

1, 2, 3, 5, 6, 30, 61, 150, 514, 1025, 5153, 13390, 13391, 131964, 502651, 664312, 4387185, 5392318, 20613826
Offset: 1

Views

Author

Gus Wiseman, Oct 07 2024

Keywords

Comments

Warning: Do not confuse with A246655 (prime-powers exclusive).

Examples

			The squarefree numbers (A005117) are:
  1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, ...
with first differences (A076259):
  1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, ...
with first differences (A376590):
  0, 1, -1, 0, 2, -2, 1, -1, 0, 1, 0, 0, -1, 0, 2, 0, -2, 0, 1, -1, 0, 1, -1, 0, ...
with sorted first appearances at (A376655):
  1, 2, 3, 5, 6, 30, 61, 150, 514, 1025, 5153, 13390, 13391, ...
		

Crossrefs

For first differences we had A376311 (first appearances in A076259).
These are the sorted positions of first appearances in A376590.
For prime-powers instead of squarefree numbers we have A376653/A376654.
For primes instead of squarefree numbers we have A376656.
A000040 lists the prime numbers, differences A001223.
A005117 lists squarefree numbers, complement A013929 (differences A078147).
A073576 counts integer partitions into squarefree numbers, factorizations A050320.
For second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376562 (non-perfect-power), A376593 (nonsquarefree), A376596 (prime-power inclusive), A376599 (non-prime-power inclusive).
For squarefree: A376591 (inflections and undulations), A376592 (nonzero curvature).

Programs

  • Mathematica
    q=Differences[Select[Range[1000],SquareFreeQ],2];
    Select[Range[Length[q]],!MemberQ[Take[q,#-1],q[[#]]]&]

Extensions

a(14)-a(19) from Chai Wah Wu, Oct 07 2024

A373414 Sum of the n-th maximal run of nonsquarefree numbers differing by one.

Original entry on oeis.org

4, 17, 12, 16, 18, 20, 49, 55, 32, 36, 40, 89, 147, 52, 54, 56, 60, 127, 68, 72, 151, 161, 84, 88, 90, 92, 96, 297, 104, 108, 112, 233, 241, 375, 128, 132, 271, 140, 144, 295, 150, 305, 156, 160, 162, 164, 337, 343, 351, 180, 184, 377, 192, 196, 198, 200, 204
Offset: 1

Views

Author

Gus Wiseman, Jun 06 2024

Keywords

Comments

The length of this run is given by A053797.
A run of a sequence (in this case A013929) is an interval of positions at which consecutive terms differ by one.

Examples

			Row-sums of:
   4
   8   9
  12
  16
  18
  20
  24  25
  27  28
  32
  36
  40
  44  45
  48  49  50
		

Crossrefs

The partial sums are a subset of A329472.
Functional neighbors: A053797, A053806, A054265, A373406, A373412, A373413.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Mathematica
    Total/@Split[Select[Range[100],!SquareFreeQ[#]&],#1+1==#2&]//Most

A375738 Minimum of the n-th maximal anti-run of adjacent (increasing by more than one at a time) non-perfect-powers.

Original entry on oeis.org

2, 3, 6, 7, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23, 24, 29, 30, 31, 34, 35, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 83, 84, 85, 86, 87, 88
Offset: 1

Views

Author

Gus Wiseman, Sep 10 2024

Keywords

Comments

Non-perfect-powers (A007916) are numbers with no proper integer roots.
An anti-run of a sequence is an interval of positions at which consecutive terms differ by more than one.

Examples

			The initial anti-runs are the following, whose minima are a(n):
  (2)
  (3,5)
  (6)
  (7,10)
  (11)
  (12)
  (13)
  (14)
  (15,17)
  (18)
  (19)
  (20)
  (21)
  (22)
  (23)
  (24,26,28)
		

Crossrefs

For composite numbers we have A005381, runs A008864 (except first term).
For prime-powers we have A120430, runs A373673 (except first term).
For squarefree numbers we have A373408, runs A072284.
For nonsquarefree numbers we have A373410, runs A053806.
For non-prime-powers we have A373575, runs A373676.
For anti-runs of non-perfect-powers:
- length: A375736
- first: A375738 (this)
- last: A375739
- sum: A375737
For runs of non-perfect-powers:
- length: A375702
- first: A375703
- last: A375704
- sum: A375705
A001597 lists perfect-powers, differences A053289.
A007916 lists non-perfect-powers, differences A375706.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Min/@Split[Select[Range[100],radQ],#1+1!=#2&]//Most

A376264 Run-sums of first differences (A078147) of nonsquarefree numbers (A013929).

Original entry on oeis.org

4, 1, 3, 4, 4, 4, 1, 2, 1, 16, 1, 3, 2, 6, 4, 3, 1, 8, 3, 1, 4, 1, 3, 4, 4, 4, 2, 2, 16, 1, 3, 1, 3, 2, 2, 4, 3, 1, 8, 3, 1, 4, 1, 3, 4, 4, 4, 1, 2, 1, 3, 1, 12, 1, 3, 4, 4, 4, 3, 1, 16, 1, 3, 4, 4, 4, 2, 3, 3, 4, 8, 1, 3, 4, 4, 3, 1, 3, 1, 8, 1, 3, 4, 1, 3, 4
Offset: 1

Views

Author

Gus Wiseman, Sep 26 2024

Keywords

Comments

Does the image include all positive integers? I have only verified this up to 8.

Examples

			The sequence of nonsquarefree numbers (A013929) is:
  4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 48, 49, 50, ...
with first differences (A078147):
  4, 1, 3, 4, 2, 2, 4, 1, 2, 1, 4, 4, 4, 4, 1, 3, 1, 1, 2, 2, 2, 4, 3, 1, ...
with runs:
  (4),(1),(3),(4),(2,2),(4),(1),(2),(1),(4,4,4,4),(1),(3),(1,1),(2,2,2), ...
with sums (A376264):
  4, 1, 3, 4, 4, 4, 1, 2, 1, 16, 1, 3, 2, 6, 4, 3, 1, 8, 3, 1, 4, 1, 3, 4, ...
		

Crossrefs

Before taking run-sums we had A078147.
For nonprime instead of nonsquarefree numbers we have A373822.
Positions of first appearances are A376265, sorted A376266.
For run-lengths instead of run-sums we have A376267.
For squarefree instead of nonsquarefree we have A376307.
For prime-powers instead of nonsquarefree numbers we have A376310.
For compression instead of run-sums we have A376312.
A000040 lists the prime numbers, differences A001223.
A000961 and A246655 list prime-powers, differences A057820.
A003242 counts compressed compositions, ranks A333489.
A005117 lists squarefree numbers, differences A076259 (ones A375927).
A013929 lists nonsquarefree numbers, differences A078147.

Programs

  • Mathematica
    Total/@Split[Differences[Select[Range[1000],!SquareFreeQ[#]&]]]//Most
Previous Showing 51-60 of 70 results. Next