cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A242227 a(n) = (2*n-1) * a(n-1) - a(n-2), a(0) = 1, a(1) = 2.

Original entry on oeis.org

1, 2, 5, 23, 156, 1381, 15035, 194074, 2896075, 49039201, 928848744, 19456784423, 446577192985, 11144973040202, 300467694892469, 8702418178841399, 269474495849190900, 8883955944844458301, 310668983573706849635, 11485868436282308978194
Offset: 0

Views

Author

Michael Somos, May 08 2014

Keywords

Examples

			G.f. = 1 + 2*x + 5*x^2 + 23*x^3 + 156*x^4 + 1381*x^5 + 15035*x^6 + ...
		

Crossrefs

Programs

  • Magma
    I:=[1,2]; [n le 2 select I[n] else (2*n-1)*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 06 2018
  • Mathematica
    RecurrenceTable[{a[n] == (2*n-1)*a[n-1] - a[n-2], a[0] == 1, a[1] == 2}, a, {n, 0, 50}] (* G. C. Greubel, Aug 06 2018 *)
    nxt[{n_,a_,b_}]:={n+1,b,b(2n+1)-a}; NestList[nxt,{1,1,2},20][[All,2]] (* Harvey P. Dale, Aug 01 2022 *)
  • PARI
    {a(n) = if( n>-4, if( n<0, -2-n, (2*n - 1) * a(n-1) - a(n-2)), (2*n + 3) * a(n+1) - a(n+2))};
    

Formula

a(n) = A053983(n) + A053984(n) = -(-1)^n * A121323(-2-n) for all integer n.
0 = a(n)*(a(n+2)) + a(n+1)*(-a(n+1) + 2*a(n+2) - a(n+3)) + a(n+2)*(a(n+2)) for all integer n.

A257859 a(n) = (2*n-1)*a(n-1) - a(n-2) with a(0)=2, a(1)=1.

Original entry on oeis.org

2, 1, 1, 4, 27, 239, 2602, 33587, 501203, 8486864, 160749213, 3367246609, 77285922794, 1928780823241, 51999796304713, 1506065312013436, 46636024876111803, 1537482755599676063, 53765260421112550402, 1987777152825564688811, 77469543699775910313227
Offset: 0

Views

Author

G. C. Greubel, May 10 2015

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select 3-n else (2*n-3)*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, May 12 2015
  • Mathematica
    RecurrenceTable[{a[0] == 2, a[1] == 1, a[n] == -a[n - 2] + (2 n - 1) a[n - 1]}, a, {n, 30}]

Formula

a(n) = 2*A053983(n) - A053984(n).
a(n) = (SBY(0,1) - 2*SBY(1,1))*SBJ(n,1) - (SBJ(0,1) - 2*SBJ(1,1))*SBY(n,1), where SBJ and SBY are the spherical Bessel functions of first and second kind, respectively.
E.g.f.: (2*cos(1-sqrt(1-2*x)) - sin(1-sqrt(1-2*x)))/sqrt(1-2*x).
Sum_{n=0..infinity} a(n-1) x^n/n! = cos(1-sqrt(1-2*x)) + 2*sin(1-sqrt(1-2*x)), where a(-1)=1, a(0)=2, a(1)=1.
a(n) ~ (2*cos(1)-sin(1)) * 2^(n+1/2) * n^n / exp(n). - Vaclav Kotesovec, May 20 2015
Previous Showing 11-12 of 12 results.