cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-33 of 33 results.

A122073 Triangular array from Steinbach matrices plus their squares as characteristic polynomials: M[i,j]=A[i,j]+A[i,j]^2: A[i,j]^2=Min[i,j]; CharacteristicPolynomial[M[i,j]];.

Original entry on oeis.org

1, 2, -1, 0, -4, 1, 2, -9, 8, -1, -2, -3, 19, -12, 1, -4, -6, 47, -55, 18, -1, 2, 15, 0, -88, 93, -24, 1, 2, 23, -7, -190, 324, -182, 32, -1, 0, -12, -63, 62, 332, -554, 274, -40, 1, 2, -9, -108, 133, 678, -1642, 1346, -450, 50, -1, -2, -11, 55, 276, -463, -1129, 2832, -2128, 630, -60, 1, -4, -30, 71, 543, -1044, -2204, 7761
Offset: 1

Views

Author

Gary W. Adamson and Roger L. Bagula, Oct 16 2006

Keywords

Comments

Based on the idea that the Steinbach matrices form a "golden Field". Matrices are: {{2, 2}, {2, 2}}, {{2, 2, 2}, {2, 3, 2}, {2, 2, 3}}, {{2, 2, 2, 2}, {2, 3, 3, 2}, {2, 3, 3, 3}, {2, 2, 3, 4}}, {{2, 2, 2, 2, 2}, {2, 3, 3, 3, 2}, {2, 3, 4, 3, 3}, {2, 3, 3, 4, 4}, {2, 2, 3, 4, 5}}, {{2, 2, 2, 2, 2, 2}, {2,3, 3, 3, 3, 2}, {2, 3, 4, 4, 3, 3}, {2, 3, 4, 4, 4, 4}, {2, 3, 3, 4, 5, 5}, {2, 2, 3, 4, 5, 6}}

Examples

			{1},
{2, -1},
{0, -4, 1},
{2, -9, 8, -1},
{-2, -3, 19, -12, 1},
{-4, -6,47, -55, 18, -1}
{2, 15, 0, -88, 93, -24, 1},
{2, 23, -7, -190, 324, -182, 32, -1},
{0, -12, -63, 62, 332, -554, 274, -40, 1}
		

Crossrefs

Programs

  • Mathematica
    An[d_] := Table[Min[n, m] + If[n + m - 1 > d, 0, 1], {n, 1, d}, {m, 1, d}]; Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[An[d], x], x], {d,1, 20}]]; Flatten[%]

Formula

d-th level M(i,j)->An[d]; T(n,m)=CoefficientList[CharacteristicPolynomial[An[d], x], x]

A171824 Triangle T(n,k)= binomial(n + k,n) + binomial(2*n-k,n) read by rows.

Original entry on oeis.org

2, 3, 3, 7, 6, 7, 21, 14, 14, 21, 71, 40, 30, 40, 71, 253, 132, 77, 77, 132, 253, 925, 469, 238, 168, 238, 469, 925, 3433, 1724, 828, 450, 450, 828, 1724, 3433, 12871, 6444, 3048, 1452, 990, 1452, 3048, 6444, 12871, 48621, 24320, 11495, 5225, 2717, 2717, 5225, 11495, 24320, 48621
Offset: 0

Views

Author

Roger L. Bagula, Dec 19 2009

Keywords

Examples

			Triangle begins as:
       2;
       3,     3;
       7,     6,     7;
      21,    14,    14,    21;
      71,    40,    30,    40,   71;
     253,   132,    77,    77,  132,  253;
     925,   469,   238,   168,  238,  469, 925;
    3433,  1724,   828,   450,  450,  828, 1724,  3433;
   12871,  6444,  3048,  1452,  990, 1452, 3048,  6444, 12871;
   48621, 24320, 11495,  5225, 2717, 2717, 5225, 11495, 24320, 48621;
  184757, 92389, 43824, 19734, 9009, 6006, 9009, 19734, 43824, 92389, 184757;
		

Crossrefs

Row sums are A000984(n+1).

Programs

  • Magma
    T:= func< n,k | Binomial(n+k,n) + Binomial(2*n-k,n) >;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 29 2021
    
  • Mathematica
    T[n_, k_] = Binomial[n+k, k] + Binomial[2*n-k, n-k];
    Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten
  • Sage
    def T(n, k): return binomial(n+k,n) + binomial(2*n-k,n)
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 29 2021

Formula

T(n,k) = A046899(n,k) + A092392(n,k).
Sum_{k=0..n} T(n,k) = binomial(2*n+2, n+1) = 2*A001700(n) = A000984(n+1). - G. C. Greubel, Apr 29 2021

Extensions

Formula and row sums reference added by the Assoc. Editors of the OEIS, Feb 24 2010

A175990 Irregular triangle read by rows: t(n,m) = binomial(n-m-1,m+1) for 0 <= m <= floor((n-1)/2).

Original entry on oeis.org

1, 2, 0, 3, 1, 4, 3, 0, 5, 6, 1, 6, 10, 4, 0, 7, 15, 10, 1, 8, 21, 20, 5, 0, 9, 28, 35, 15, 1, 10, 36, 56, 35, 6, 0, 11, 45, 84, 70, 21, 1, 12, 55, 120, 126, 56, 7, 0, 13, 66, 165, 210, 126, 28, 1, 14, 78, 220, 330, 252, 84, 8, 0, 15, 91, 286, 495, 462, 210, 36, 1, 16, 105, 364, 715, 792, 462, 120, 9, 0, 17, 120
Offset: 2

Views

Author

Roger L. Bagula, Dec 06 2010

Keywords

Examples

			Triangle begins:
   1;
   2,  0;
   3,  1;
   4,  3,  0;
   5,  6,  1;
   6, 10,  4,  0;
   7, 15, 10,  1;
   8, 21, 20,  5,  0;
   9, 28, 35, 15,  1;
  10, 36, 56, 35,  6,  0;
  11, 45, 84, 70, 21,  1;
		

Crossrefs

Row sums are A000071.
Essentially the same as A011973 (removing first column). Elimination of each 2nd row yields essentially A054142 or A121314. Interleaving with zeros gives A052553.
Padding with an initial column of 1's and more zeros yields A169803. Signed variants are A115139 and A124033.

Programs

  • Mathematica
    Table[Binomial[n-m-1,m+1],{n,2,15},{m,0,Floor[(n-1)/2]}]//Flatten (* Harvey P. Dale, May 08 2023 *)

Extensions

Definition clarified by Harvey P. Dale, May 08 2023
Previous Showing 31-33 of 33 results.