cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 37 results. Next

A054407 Number of asymmetric n X n binary matrices under action of dihedral group of the square D_4.

Original entry on oeis.org

0, 0, 0, 36, 7860, 4177152, 8589313152, 70368605798400, 2305842990423490560, 302231454885790246502400, 158456325028519245775644917760, 332306998946228931044233275859009536, 2787593149816327892614636032925171439370240
Offset: 0

Views

Author

Vladeta Jovovic, May 08 2000

Keywords

Crossrefs

Cf. A054247.

Formula

(1/8)*(2^(n^2)-2*2^((n^2+n)/2)-3*2^(n^2/2)+2*2^(n^2/4)+2*2^((n^2+2*n)/4)) if n is even and (1/8)*(2^(n^2)-4*2^((n^2+n)/2)-2^((n^2+1)/2)+4*2^((n^2+2*n+1)/4)) if n is odd. - Corrected by Colin Barker, Oct 25 2016

Extensions

More terms from Colin Barker, Oct 25 2016

A286394 Number of inequivalent n X n matrices over GF(8) under action of dihedral group of the square D_4.

Original entry on oeis.org

1, 8, 666, 16912512, 35184646816768, 4722366500530551259136, 40564819207305653446303190876160, 22300745198530623151211847196048401987796992, 784637716923335095479473759060307277562325323313332617216
Offset: 0

Views

Author

María Merino, Imanol Unanue, Yosu Yurramendi, May 08 2017

Keywords

Comments

Burnside's orbit-counting lemma.

Crossrefs

Formula

a(n) = (1/8)*(8^(n^2) + 2*8^(n^2/4) + 3*8^(n^2/2) + 2*8^((n^2 + n)/2)) if n is even;
a(n) = (1/8)*(8^(n^2) + 2*8^((n^2 + 3)/4) + 8^((n^2 + 1)/2) + 4*8^((n^2 +n)/2)) if n is odd.

A367522 The number of ways of tiling the n X n grid up to the symmetries of the square by a tile that is fixed under both horizontal and vertical reflection, but not diagonal reflection.

Original entry on oeis.org

1, 4, 84, 8292, 4203520, 8590033024, 70368815480832, 2305843010824323072, 302231454912728264605696, 158456325028529097399561355264, 332306998946228986960926214931349504, 2787593149816327892693735671512138485071872, 93536104789177786765036453099565034406633831137280
Offset: 1

Views

Author

Peter Kagey, Nov 21 2023

Keywords

Comments

The a(2) = 4 tilings are
- - - - - | - |
- -, | -, - |, and | -.

Crossrefs

Programs

  • Mathematica
    a[n_] := If[EvenQ[n], 2^(#^2 - 3)*(2 + 3*2^#^2 + 8^#^2) &[n/2], 4^(#^2 - 2 # - 1)*(4^# + 4^#^2 + 8^#) &[(n + 1)/2]]; Array[a, 13] (* Michael De Vlieger, Jul 06 2024 *)

Formula

a(2m-1) = 4^(m^2 - 2m - 1)*(4^m + 4^m^2 + 8^m).
a(2m) = 2^(m^2 - 3)*(2 + 3*2^m^2 + 8^m^2).

A367523 The number of ways of tiling the n X n grid up to the symmetries of the square by a tile that is fixed under 90-degree rotations, but not reflections.

Original entry on oeis.org

1, 4, 70, 8292, 4195360, 8590033024, 70368748374016, 2305843010824323072, 302231454903932172107776, 158456325028529097399561355264, 332306998946228968514182141758668800, 2787593149816327892693735671512138485071872, 93536104789177786765035834129545391718695404830720
Offset: 1

Views

Author

Peter Kagey, Dec 10 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[{2^(-2 + (-4 + n) n) (2^(n (2 + n)) + 2^(1 + 3 n) + 8^n^2), 2^(-3 + n^2) (2 + 3 2^n^2 + 8^n^2)}, {n, 1, 5}] // Flatten

Formula

a(2m-1) = 2^(m^2 - 4m - 2)*(2^(3m+1) + 2^(m^2+2m) + 8^m^2).
a(2m) = 2^(m^2 - 3)*(2 + 3*2^m^2 + 8^m^2) = A367522(2m).

A268339 Number of polyominoes with width and height equal to n that are invariant under all symmetries of the square.

Original entry on oeis.org

1, 1, 3, 3, 17, 17, 163, 163, 2753, 2753, 84731, 84731, 4879497, 4879497, 535376723, 535376723, 112921823249, 112921823249, 45931435159067, 45931435159067, 36048888105745113, 36048888105745113, 54568015172025197171, 54568015172025197171, 159197415409641803530753, 159197415409641803530753
Offset: 1

Views

Author

Craig Knecht, Feb 02 2016

Keywords

Comments

Percolation theory focuses on patterns that provide connectivity. Polyominoes that connect all boundaries of a square are in the percolation neighborhood. This subclass of symmetric polyominoes distinguishes itself for its beauty and its unusual enumeration pattern.

Examples

			The ones in this example provide the connective pattern that joins all boundaries of the square.
0 1 1 1 0
1 0 1 0 1
1 1 1 1 1
1 0 1 0 1
0 1 1 1 0
		

Crossrefs

Cf. A054247 (all unique water retention patterns for an n X n square), A268311 (polyominoes that connect all boundaries on a square), A268758.

Formula

a(2*n) = a(2*n-1) = A268758(n). - Andrew Howroyd, May 03 2020

Extensions

Terms a(17) and beyond from Andrew Howroyd, May 03 2020

A268758 Number of polyominoes with width and height equal to 2n that are invariant under all symmetries of the square.

Original entry on oeis.org

1, 3, 17, 163, 2753, 84731, 4879497, 535376723, 112921823249, 45931435159067, 36048888105745113, 54568015172025197171, 159197415409641803530753, 894444473815989281612355579, 9671160618112663336510127727593, 201110001346886305066013828873025811
Offset: 1

Views

Author

Craig Knecht, Feb 14 2016

Keywords

Comments

Also number of polyominoes with width and height equal to 2n - 1 that are invariant under all symmetries of the square.
Bisection of A268339.
The water retention model for mathematical surfaces is described in the link below. The definition of a "lake" in this model is related to a class of polyominoes in A268339. Percolation theory may refer to these structures as "clusters that touch all boundaries."
Transportation across the square lattice requires a path of continuous edge connected cells. Is a pattern that only connects two opposite boundaries of the square ranked differently from one that connects all four boundaries?
This sequence is part of a effort to classify water retention patterns in a square by their symmetry, their capacity to connect boundaries of the square and the number of edge cells that are connected across opposite boundaries.

Examples

			For a(2) = 3: the three polyominoes of width and height 2*2 - 1 = 3 and the corresponding three polynomial of width and height 2*2 = 4 are shown below. Note that each even-dimension polyomino is produced by duplicating the center row/column of an odd-dimension polyomino.
3 X 3:
   0 1 0     1 1 1     1 1 1
   1 1 1     1 0 1     1 1 1
   0 1 0     1 1 1     1 1 1
4 X 4:
  0 1 1 0   1 1 1 1   1 1 1 1
  1 1 1 1   1 0 0 1   1 1 1 1
  1 1 1 1   1 0 0 1   1 1 1 1
  0 1 1 0   1 1 1 1   1 1 1 1
		

Crossrefs

Formula

a(n) = A331878(n) - 3*A331878(n-1) + 3*A331878(n-2) - A331878(n-3) for n >= 4. - Andrew Howroyd, May 03 2020

Extensions

Terms a(9) and beyond from Andrew Howroyd, May 03 2020

A286396 Number of inequivalent n X n matrices over GF(9) under action of dihedral group of the square D_4.

Original entry on oeis.org

1, 9, 1035, 48700845, 231628411446741, 89737248564744874067889, 2816049943117424212512789695666175, 7158021121277935153545945911617993395398302485, 1473773072217322896440109113309952350877179744639518847951721
Offset: 0

Views

Author

María Merino, Imanol Unanue, Yosu Yurramendi, May 08 2017

Keywords

Comments

Burnside's orbit-counting lemma.

Crossrefs

Programs

  • Mathematica
    Table[1/8*(9^(n^2) + 2*9^((n^2 + 3 #)/4) + (3 - 2 #)*9^((n^2 + #)/2) + (2 + 2 #)*9^((n^2 + n)/2)) &@ Boole@ OddQ@ n, {n, 0, 7}] (* Michael De Vlieger, May 12 2017 *)

Formula

a(n) = (1/8)*(9^(n^2) + 2*9^(n^2/4) + 3*9^(n^2/2) + 2*9^((n^2 + n)/2)) if n is even;
a(n) = (1/8)*(9^(n^2) + 2*9^((n^2 + 3)/4) + 9^((n^2 + 1)/2) + 4*9^((n^2 + n)/2)) if n is odd.

A286397 Number of inequivalent n X n matrices over an alphabet of size 10 under action of dihedral group of the square D_4.

Original entry on oeis.org

1, 10, 1540, 125512750, 1250002537502500, 1250000000501250002500000, 125000000000000250375000000250000000, 1250000000000000000005001250000000002500000000000
Offset: 0

Views

Author

María Merino, Imanol Unanue, Yosu Yurramendi, May 08 2017

Keywords

Comments

Burnside's orbit-counting lemma.

Crossrefs

Programs

  • Mathematica
    Table[1/8*(10^(n^2) + 2*10^((n^2 + 3 #)/4) + (3 - 2 #)*10^((n^2 + #)/2) + (2 + 2 #)*10^((n^2 + n)/2)) &@ Boole@ OddQ@ n, {n, 7}] (* Michael De Vlieger, May 12 2017 *)

Formula

a(n) = (1/8)*(10^(n^2) + 2*10^(n^2/4) + 3*10^(n^2/2) + 2*10^((n^2 + n)/2)) if n is even;
a(n) = (1/8)*(10^(n^2) + 2*10^((n^2 + 3)/4) + 10^((n^2 + 1)/2) + 4*10^((n^2 + n)/2)) if n is odd.

A261798 Maximum water retention of an associative magic square of order n.

Original entry on oeis.org

0, 0, 0, 15, 59, 0, 361, 704, 1247, 0
Offset: 1

Views

Author

Craig Knecht, Sep 01 2015

Keywords

Comments

Two of the most famous magic squares are associative magic squares - the Lo Shu magic square and Dürer's magic square. Al Zimmermann's programming contest in 2010 produced the presently known maximum retention values for magic squares order 4 to 28 A201126. No concerted effort has been made to find the maximum retention for associative magic squares.
There are 4211744 different water retention patterns for a 7 x 7 square A054247 and 1.12*10^18 different order 7 associative magic squares. There is no proof that the presently stated maximum retention values greater than order 5 are actually the maximum possible retention.
a(11) >= 3226, a(12) >= 4840, a(13) >= 6972.
The Wikipedia link below shows the first attempt to classify a set of data by its water retention. Here the 48 associative order 4 magic squares are thus classified. Perhaps there might be some correlation between this surface evaluation and Mohs hardness scale.

Examples

			(16  3  2  13)
(5  10 11   8)
(9   6  7  12)
(4  15  14  1)
This is Albrecht Dürer's famous magic square in Melancholia I. Dürer put the date of its creation (1514) in the numbers in the bottom row. This square holds 5 units of water.
		

Crossrefs

Cf. A201126 (water retention on magic squares), A201127 (water retention on semi-magic squares), A261347 (water retention on number squares).

A285766 Maximum spillway height for a zero or one bend minimal area lake in a number square.

Original entry on oeis.org

0, 0, 6, 10, 15, 22, 31, 42, 55, 70, 87, 106, 127, 150, 175, 202, 231, 262, 295, 330, 367, 406, 447, 490, 535, 582, 631, 682, 735, 790, 847, 906, 967, 1030, 1095, 1162, 1231, 1302, 1375, 1450, 1527, 1606, 1687, 1770, 1855, 1942, 2031, 2122, 2215, 2310, 2407
Offset: 0

Views

Author

Craig Knecht, May 04 2017

Keywords

Comments

The water retention model for mathematical surfaces led to definitions for a lake and a pond. These lakes and ponds divide the square up in interesting ways. This sequence looks at the spillway heights in zero or one bend minimal area lakes.
A lake has dimensions of (n-2) X (n-2) when the square is n X n. All other water retaining areas are ponds.
A number square contains the numbers 1 to n^2 without repeats.
The larger terms are a(n)= n^2+6 or A114949.

Examples

			For the 4 X 4 square a example of a smallest lake is shown. The values 1,2,3 form the lake. The pathway of least resistance off the square is the spillway value 10.
   ( 4  16  15   5)
   (10   1   2  14)
   ( 6  11   3  13)
   ( 7   8  12   9)
		

Crossrefs

Formula

Conjectures from Colin Barker, May 07 2017: (Start)
G.f.: x^2*(6 - 8*x + 3*x^2 + x^3) / (1 - x)^3.
a(n) = 7 - 2*n + n^2 for n>2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>5.
(End)
Previous Showing 21-30 of 37 results. Next