cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A132103 Number of distinct Tsuro tiles which are digonal in shape and have Q points per side.

Original entry on oeis.org

1, 1, 3, 8, 45, 283, 2847, 34518, 511209
Offset: 0

Views

Author

Keith F. Lynch, Oct 31 2007

Keywords

Comments

Turning over is allowed.
See A132100 for definition and comments.

Crossrefs

A279207 Number of analytic chord diagrams with n chords.

Original entry on oeis.org

1, 2, 5, 18, 102, 817, 7641
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 2016

Keywords

Crossrefs

A279208 Number of analytic chord diagrams with n chords, up to symmetry.

Original entry on oeis.org

1, 2, 5, 17, 76, 499, 4132
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 2016

Keywords

Crossrefs

A177797 Number of decomposable fixed-point free involutions, also the number of disconnected chord diagrams with 2n nodes on an open string.

Original entry on oeis.org

0, 0, 1, 5, 31, 239, 2233, 24725, 318631, 4707359, 78691633, 1471482725, 30469552111, 692488851599, 17141242421353, 459033875802485, 13221994489388791, 407574126219013439, 13386292717807416673, 466636446695213384645, 17205919477720642772671, 669019022588385113932079, 27357684052927560953626393
Offset: 0

Views

Author

Frank Kuehnel, Dec 27 2010

Keywords

Comments

Line up 2n distinguishable nodes sequentially on an open string. Connect each two nodes with only one chord, there will be a (2n-1)!! variety of chord diagrams. Amongst this variety, we can classify a diagram as disconnected when it is possible to find a node index 2s with all nodes <=2s in group A and the rest in group B where none of the chords connect nodes between group A and B.
The subsequence of primes begins 5, 31, 239, 4707359, 78691633, 17141242421353, no more through a(22). - Jonathan Vos Post, Jan 31 2011

Crossrefs

Chord Diagrams: A054499, A007769.
Permutations: A001147, A000698, A003319. - Joerg Arndt

Programs

  • Mathematica
    (* derived from Joerg Arndt's PARI code *)
    f[n_] := f[n] = (2n-1)!!
    s[n_] := s[n] = f[n] - Sum[f[k] s[n - k], {k, 1, n - 1}]
    Table[f[k] - s[k], {k, 0, 22}]
    (* original brute force method *)
    GenerateDiagramsOfOrder[n_Integer /; n >= 0] := Diagrams[Range[2 n]]
    Diagrams[pool_List] := Block[{n = Count[pool, _]}, If[n <= 2, {{pool}},
      Flatten[Map[
        Flatten[
          Outer[Join, {{{pool[[1]], pool[[#]]}}},
            Diagrams[
             Function[{poolset, droppos},
               Drop[poolset, {droppos}] // Rest][pool, #]], 1], 1] &,
         Range[2, n]], 1]]]
    SelectDisconnected[diagrams_List] := Select[diagrams, IsDisconnected]
    IsDisconnected[{{}}] = False;
    IsDisconnected[pairs_List] :=
      Block[{newPairs=Map[#~Append~(#[[2]] - #[[1]]) &, pairs],
             distanceList},
        distanceList = Fold[
          ReplacePart[#1, {#2[[1]] -> #2[[3]], #2[[2]] -> -#2[[3]]}] &,
          Range[2 Length[pairs]],
          newPairs];
        Return[Length[Select[Drop[Accumulate[distanceList], -1], #<1 &]] > 0]
      ]
    Map[Length[SelectDisconnected[GenerateDiagramsOfOrder[#]]]&, Range[0,7]]
  • PARI
    f(n)=(2*n)!/n!/2^n;  \\ == (2n-1)!!
    s(n)=f(n) - sum(k=1, n-1, f(k)*s(n-k) )
    a(n)=f(n)-s(n)
    \\ Joerg Arndt
    
  • Python
    from functools import cache
    def a(n):
        @cache
        def h(n):
            if n <= 1: return 1
            return h(n - 1) * (2 * n - 1)
        @cache
        def c(n):
            if n == 0: return 1
            return h(n) - sum(h(k) * c(n - k) for k in range(1, n))
        return h(n) - c(n)
    print([a(n) for n in range(19)])  # Peter Luschny, Apr 16 2023

A272906 Number of topologically-distinct pizza slicings from n chords in general position.

Original entry on oeis.org

1, 1, 2, 5, 19, 130, 1814
Offset: 0

Views

Author

Jon Hart, May 09 2016

Keywords

Comments

The problem is to cut a disk with n chords, no three of which may meet at a single strictly-interior point. For each such slicing, construct the graph on vertices (pieces of the pizza) connected by edges (line segments separating two pieces). a(n) gives the number of such graphs up to isomorphism.
This is an empirical result, obtained from guided random trials. Independent programs agree up to and including a(5)=130. Term a(6)=1814 is unconfirmed.
A054499, counting chord diagrams, is a loose lower bound.

Examples

			For n=3, there are a(3)=5 topologically distinct slicings from chords in general position. These exclude a sixth configuration found when the three chords meet at a point strictly internal to the pizza.
		

Crossrefs

Cf. A273280.
Maximum number of regions, A000124(n), found in A090338(n) configurations. Minimum number of regions, n+1, found in A000055(n+1) configurations. Configurations can be partitioned by chord diagram, so A054499 is a (loose) lower bound.

A322176 Triangle read by rows: The number of chord diagrams on 2n vertices with m marked chords.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 5, 8, 8, 5, 17, 39, 61, 39, 17, 79, 287, 556, 556, 287, 79, 554, 2792, 6910, 9058, 6910, 2792, 554, 5283, 34650, 103212, 171195, 171195, 103212, 34650, 5283, 65346, 510593, 1783325, 3559031, 4449494, 3559031, 1783325, 510593, 65346
Offset: 0

Views

Author

R. J. Mathar, Nov 30 2018

Keywords

Examples

			   1;
   1,   1;
   2,   2,   2;
   5,   8,   8,   5;
  17,  39,  61,  39,  17;
  79, 287, 556, 556, 287, 79;
		

Crossrefs

Cf. A054499.

Programs

  • PARI
    C(p, d)={sum(k=0, p\2, binomial(p, 2*k) * (d*(1+y^d))^k * if(d%2, p==2*k, (1+y^(d/2))^(p-2*k)) * (2*k)!/(2^k*k!))}
    R(n)={sum(k=0, n\2, binomial(n,2*k) * (1+y^2)^k * (1+y)^(n-2*k) * (2*k)!/k!)}
    row(n)={Vec(if(n==0, 1, (sumdiv(2*n, d, eulerphi(d)*C(2*n/d, d))/n + R(n) + (1+y)*R(n-1))/4))}
    { for(n=0, 8, print(row(n))) } \\ Andrew Howroyd, Dec 13 2018

Formula

T(n,m) = T(n,n-m).
T(n,0) = A054499(n).

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 13 2018

A104256 [ (2n-1)!!/(4n) ].

Original entry on oeis.org

0, 0, 1, 6, 47, 433, 4826, 63344, 957206, 16368226, 312484331, 6588211317, 152035645781, 3811750833515, 103171389227156, 2998418499414228, 93127351040630156, 3078376326065274609, 107905191218919625781
Offset: 1

Views

Author

Ralf Stephan, Mar 02 2005

Keywords

Comments

Asymptotic estimate for A054499(n).

A371305 Triangle T(n,k) read by rows: number of chord diagrams with k isolated bracelets and a total of n chords.

Original entry on oeis.org

1, 2, 1, 5, 2, 1, 17, 8, 2, 1, 79, 27, 8, 2, 1, 554, 128, 31, 8, 2, 1, 5283, 797, 143, 31, 8, 2, 1, 65346, 6939, 878, 148, 31, 8, 2, 1, 966156, 80025, 7381, 898, 148, 31, 8, 2, 1, 16411700, 1135841, 83038, 7494, 904, 148, 31, 8, 2, 1, 312700297, 18804319, 1161866, 83679, 7519, 904, 148, 31, 8, 2, 1
Offset: 1

Views

Author

R. J. Mathar, Mar 18 2024

Keywords

Comments

Multiset transformation of A054499.
The row sums 1, 3, 8, 28, 117, 724, 6265, 73353, 1054650, 17639167, ... are the Euler Transform of A054499.

Examples

			T(3,2)=2: two bracelets with 3 chords in two variants (i) one bracelet with one chord and the other with 2 noncrossing chords, (ii) one bracelet with one chord and the other with 2 crossing chords.
1 ;
2 1 ;
5 2 1 ;
17 8 2 1 ;
79 27 8 2 1 ;
554 128 31 8 2 1 ;
5283 797 143 31 8 2 1 ;
65346 6939 878 148 31 8 2 1 ;
966156 80025 7381 898 148 31 8 2 1 ;
16411700 1135841 83038 7494 904 148 31 8 2 1 ;
		

Crossrefs

Cf. A054499.

A054938 Number of chiral chord diagrams on n nodes.

Original entry on oeis.org

0, 0, 0, 1, 26, 348, 4466, 61726, 949795, 16331482, 312298796, 6587217199, 152030203190, 3811719561156, 103171205826822, 2998417379370294, 93127344062857976, 3078376281077418971, 107905190923235526392
Offset: 1

Views

Author

N. J. A. Sloane, May 24 2000

Keywords

Formula

a(n) = A054499(n)-A018191(n). [Liskovets, referring to offset 1 in A054499]. - R. J. Mathar, Oct 01 2011

A323389 The number of connected, unlabeled, undirected, edge-signed cubic graphs (admitting loops and multiedges) on 2n vertices where the degree of the first sign is 2 at each node.

Original entry on oeis.org

1, 2, 5, 19, 88, 553, 4619, 49137, 646815, 10053183, 178725865, 3555840644, 78048875298, 1871066903575, 48617053973267, 1360733669185473, 40810827325698897, 1305690378666580997, 44387116312631271929, 1597768080980647428027, 60710507893875818581964
Offset: 0

Views

Author

R. J. Mathar, Jan 13 2019

Keywords

Comments

Obtained from the cubic graphs A005967 (connected undirected cubic graphs that may have loops and/or multiedges) by signing each edge with a plus or a minus such that two pluses and one minus meet at each vertex.

Crossrefs

Cf. A005967 (unsigned), A054499 (only one cycle of pluses), A170946 (directed plus-edges).

Programs

  • PARI
    \\ See A339645 for combinatorial species functions.
    cycleIndexSeries(n)={1+sLog(sCartProd(sExp(dihedralGroupSeries(n)), sExp(symGroupCycleIndex(2)*x^2 + O(x*x^n))))}
    seq(n)={Vec(substpol(OgfSeries(cycleIndexSeries(2*n)), x^2, x))} \\ Andrew Howroyd, May 05 2023

Extensions

Terms a(6) and beyond from Andrew Howroyd, May 05 2023
Previous Showing 11-20 of 20 results.