cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A299763 a(n) = 1 + A182986(n).

Original entry on oeis.org

1, 3, 4, 6, 8, 12, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48, 54, 60, 62, 68, 72, 74, 80, 84, 90, 98, 102, 104, 108, 110, 114, 128, 132, 138, 140, 150, 152, 158, 164, 168, 174, 180, 182, 192, 194, 198, 200, 212, 224, 228, 230, 234, 240, 242, 252, 258, 264, 270, 272, 278, 282, 284
Offset: 1

Views

Author

Omar E. Pol, Mar 14 2018

Keywords

Comments

Are these the indices of the rows of A299762 where there is a record?

Crossrefs

First differences are in A054541.
Essentially the same as A008864, A028815, A055670, A135731, A175216.

Programs

Formula

a(n) = A028815(n-1) - [n=1].
a(n) = A008864(n-1) for n >= 2, with a(1) = 1.

A181346 Absolute difference between (sum of previous terms) and prime(n) with a(0) = 1 and a(1) = 2.

Original entry on oeis.org

1, 2, 0, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2, 4, 14, 4, 6, 2, 10, 2, 6, 6, 4, 6, 6, 2, 10, 2, 4, 2, 12, 12, 4, 2, 4, 6, 2, 10, 6, 6, 6, 2, 6, 4, 2, 10, 14, 4, 2, 4, 14, 6, 10, 2, 4, 6, 8, 6, 6, 4, 6, 8, 4, 8, 10, 2, 10, 2, 6, 4, 6, 8, 4, 2, 4, 12, 8, 4, 8, 4, 6, 12
Offset: 0

Views

Author

Giovanni Teofilatto, Oct 14 2010

Keywords

Comments

Essentially a duplicate of A001223: equals A001223 with terms 2,0 inserted after the initial one.

Crossrefs

Cf. A001223.
Cf. A054541. - Georg Fischer, Oct 12 2018

Programs

  • Maple
    A181346 := proc(n) option remember; if n <= 1 then return n+1 ; end if; add( procname(i),i=0..n-1)-ithprime(n) ; abs(%) ;end proc:
    seq(A181346(n),n=0..100) ; # R. J. Mathar, Oct 15 2010

Extensions

Offset and indexing corrected by R. J. Mathar, Oct 15 2010

A230846 1 + A075526(n).

Original entry on oeis.org

2, 2, 3, 3, 5, 3, 5, 3, 5, 7, 3, 7, 5, 3, 5, 7, 7, 3, 7, 5, 3, 7, 5, 7, 9, 5, 3, 5, 3, 5, 15, 5, 7, 3, 11, 3, 7, 7, 5, 7, 7, 3, 11, 3, 5, 3, 13, 13, 5, 3, 5, 7, 3, 11, 7, 7, 7, 3, 7, 5, 3, 11, 15, 5, 3, 5, 15, 7, 11, 3, 5, 7, 9, 7, 7, 5, 7, 9, 5, 9, 11, 3, 11, 3, 7, 5, 7, 9, 5, 3, 5, 13, 9, 5, 9, 5, 7
Offset: 1

Views

Author

Omar E. Pol, Nov 01 2013

Keywords

Comments

Partial sums give A095116.

Examples

			On the first quadrant of the square grid consider a diagram in which the n-th horizontal bar contains A006093(n) cells and in which the number of cells in the vertical bars gives A000720 as shown below. a(n) is the sum of the length of the n-th horizontal boundary segment and the length of the n-th vertical boundary segment between the structure formed by the horizontal bars and the structure formed by the vertical bars, hence a(n) = A075526(n) + 1. The total length of the boundary segments from [0, 0] after n-th stage is A095116(n).
.    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
30  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
28  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
22  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | |
18  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | | | | | |
16  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | | | | | | | |
12  |_ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | | | | | | | | | | | |
10  |_ _ _ _ _ _ _ _ _ _| | | | | | | | | | | | | | | | | | | | |
6   |_ _ _ _ _ _| | | | | | | | | | | | | | | | | | | | | | | | |
4   |_ _ _ _| | | | | | | | | | | | | | | | | | | | | | | | | | |
2   |_ _| | | | | | | | | | | | | | | | | | | | | | | | | | | | |
1   |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|
.
.    0 1 2 2 3 3 4 4 4 4 5 5 6 6 6 6 7 7 8 8 8 8 9 9 9 9 9 9 10 10
.
		

Crossrefs

Essentially the same as A076368.

A300951 a(n) = Product_{j=1..floor(n/2)} p(j) where p(j) = j if j is prime else 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 6, 6, 6, 6, 30, 30, 30, 30, 210, 210, 210, 210, 210, 210, 210, 210, 2310, 2310, 2310, 2310, 30030, 30030, 30030, 30030, 30030, 30030, 30030, 30030, 510510, 510510, 510510, 510510, 9699690, 9699690, 9699690, 9699690, 9699690, 9699690, 9699690
Offset: 0

Views

Author

Peter Luschny, Mar 16 2018

Keywords

Comments

a(4*n+2)=a(4*n+3)=a(4*n+4)=a(4*n+5) for n >= 1. - Robert Israel, Mar 16 2018
The length of the n-th run is given by 2*A054541(n). - Michel Marcus, Mar 17 2018

Crossrefs

Programs

  • Maple
    a := n -> mul(`if`(isprime(j), j, 1), j=1..iquo(n,2)):
    seq(a(n), n=0..44);
    # Alternative:
    f:= proc(n) option remember;
      if n::even and isprime(n/2) then procname(n-1)*n/2 else procname(n-1) fi
    end proc:
    f(0):= 1:
    map(f, [$0..100]); # Robert Israel, Mar 16 2018
  • Mathematica
    {#,#}&/@FoldList[Times,Table[If[PrimeQ[n],n,1],{n,0,30}]]//Flatten (* Harvey P. Dale, Dec 25 2019 *)
  • PARI
    a(n) = prod(i=1, n\2, if(isprime(i), i, 1)); \\ Altug Alkan, Mar 16 2018

Formula

a(n) = A002110(A056172(n)). - Robert Israel, Mar 16 2018

A333471 a(n) = 2 * mu(n) + Sum_{d|n, d > 1} mu(n/d) * (prime(d) - prime(d-1)).

Original entry on oeis.org

2, -1, 0, 1, 2, 1, 2, 0, 2, 3, 0, 3, 2, -1, 0, 4, 4, -2, 4, -3, -2, 5, 2, 0, 4, 1, -2, 1, 0, -3, 12, -2, 4, -3, 4, -4, 4, 1, 0, 2, 4, 1, 8, -5, -2, -1, 10, 2, 0, -8, -2, 1, 0, 10, 2, 2, 0, 1, 4, -1, 0, -3, 10, 0, -4, -7, 12, 3, 6, -9, 2, 4, 6, 1, -2, -3, 2, 3, 2, -2
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 23 2020

Keywords

Comments

Moebius transform of A054541 (2 followed by prime gaps).

Crossrefs

Programs

  • Mathematica
    a[n_] := 2 MoebiusMu[n] + Sum[If[d > 1, MoebiusMu[n/d] (Prime[d] - Prime[d - 1]), 0], {d, Divisors[n]}]; Table[a[n], {n, 1, 80}]

Formula

a(n) = Sum_{d|n} mu(n/d) * A054541(d).
Sum_{k=1..n} floor(n/k) * a(k) = prime(n).
Previous Showing 11-15 of 15 results.