cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A094654 Number of unlabeled 10-gonal 2-trees with n 10-gons.

Original entry on oeis.org

1, 1, 1, 6, 39, 482, 7053, 117399, 2070289, 38097139, 723169329, 14074851642, 279609377638, 5651139037570, 115901006038377, 2407291353219949, 50553753543016719, 1071971262516091572, 22926544048209731554, 494103705426160765546, 10722146465907412669810
Offset: 0

Views

Author

Vladeta Jovovic, Jun 06 2004

Keywords

Crossrefs

Column k=10 of A340811.
Cf. A054581.

Extensions

Terms a(19) and beyond from Andrew Howroyd, Feb 02 2021

A094655 Number of unlabeled 11-gonal 2-trees with n 11-gons.

Original entry on oeis.org

1, 1, 1, 6, 46, 636, 10527, 194997, 3823327, 78118107, 1646300388, 35570427615, 784467060622, 17601062294302, 400750115756742, 9240636709048733, 215435023547580882, 5071520482516388865, 120417032326341878672, 2881134828445365441407, 69410468220307148620226
Offset: 0

Views

Author

Vladeta Jovovic, Jun 06 2004

Keywords

Crossrefs

Column k=11 of A340811.
Cf. A054581.

Extensions

Terms a(19) and beyond from Andrew Howroyd, Feb 02 2021

A094656 Number of unlabeled 12-gonal 2-trees with n 12-gons.

Original entry on oeis.org

1, 1, 1, 7, 55, 840, 15189, 309607, 6671842, 149850849, 3471296793, 82442359291, 1998559329142, 49290785442796, 1233639304644946, 31268489727956101, 801335133177932829, 20736286803363051714, 541224489038545084067, 14234799536039481373552, 376974819516101224941091
Offset: 0

Views

Author

Vladeta Jovovic, Jun 06 2004

Keywords

Crossrefs

Column k=12 of A340811.
Cf. A054581.

Extensions

Terms a(19) and beyond from Andrew Howroyd, Feb 02 2021

A063688 Number of 2-trees rooted at a triangle.

Original entry on oeis.org

1, 1, 3, 10, 39, 164, 746, 3474, 16658, 81166, 401169, 2004517, 10110757, 51402250, 263133142, 1355126922, 7016115632, 36498130908, 190673015083, 999932115039, 5262094054524, 27779114013628, 147072756065567, 780722981065006
Offset: 1

Views

Author

Vladeta Jovovic, Aug 22 2001

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 76, Eq. (3.5.13).

Crossrefs

A322754 Number of unlabeled 7-trees on n nodes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 5, 15, 64, 342, 2344, 19137, 181098, 1922215, 22472875, 284556458, 3849828695, 54974808527, 819865209740, 12655913153775, 200748351368185, 3253193955012557, 53619437319817482, 895778170144927928, 15129118461773051724
Offset: 1

Views

Author

N. J. A. Sloane, Dec 26 2018

Keywords

Comments

A k-tree is recursively defined as follows: K_k is a k-tree and any k-tree on n+1 vertices is obtained by joining a vertex to a k-clique in a k-tree on n vertices.

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 328.

Crossrefs

Column k=7 of A370770.
Cf. A054581 (unlabeled 2-trees), A078792 (unlabeled 3-trees), A078793 (unlabeled 4-trees), A201702 (unlabeled 5-trees), A202037 (unlabeled 6-trees).

A063682 Number of 2-trees rooted at an asymmetric end-edge.

Original entry on oeis.org

0, 1, 3, 13, 52, 229, 1024, 4749, 22454, 108299, 529896, 2625903, 13148268, 66428383, 338197609, 1733399552, 8936746984, 46315049443, 241146306914, 1260805087503, 6616786338256, 34843842405490, 184057255372576
Offset: 1

Views

Author

Vladeta Jovovic, Aug 22 2001

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 75, Eq. (3.5.4).

Crossrefs

A063689 Number of 2-trees rooted at a triangle with 3 similar edges.

Original entry on oeis.org

1, 1, 2, 6, 21, 83, 356, 1599, 7434, 35381, 171508, 843419, 4197179, 21094355, 106915928, 545859112, 2804656069, 14491370996, 75248398034, 392476363133, 2055245992376, 10801442696736, 56953957110855, 301207378815752, 1597342159296786, 8492297139795170
Offset: 1

Views

Author

Vladeta Jovovic, Aug 22 2001

Keywords

Examples

			Sequence really begins 1, 0, 0, 1, 0, 0, 2, 0, 0, 6, 0, 0, 21, 0, 0, 83, 0, 0, 356, ... but only nonzero trisection is shown.
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 76, Eq. (3.5.17).

Crossrefs

Formula

a(n) = A058870(n) + A063687(n) with A058870(0)=0. - Sean A. Irvine, May 07 2023

Extensions

More terms from Sean A. Irvine, May 07 2023

A063692 Number of 2-trees rooted at a triangle with two similar edges.

Original entry on oeis.org

1, 2, 2, 7, 11, 25, 43, 106, 180, 453, 797, 2023, 3632, 9328, 16960, 44036, 80989, 211815, 393098, 1034958, 1934813, 5121356, 9633260, 25615432, 48433926, 129289382, 245554773, 657691061, 1253974468, 3368475942, 6444250241
Offset: 2

Views

Author

Vladeta Jovovic, Aug 23 2001

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 76, Eq. (3.5.16).

Crossrefs

A173249 Partial sums of A000272.

Original entry on oeis.org

1, 2, 3, 6, 22, 147, 1443, 18250, 280394, 5063363, 105063363, 2463011054, 64380375278, 1856540769315, 58550453144611, 2004745521503986, 74062339559431922, 2936485391069247715, 124376016487663499491
Offset: 0

Views

Author

Jonathan Vos Post, Feb 13 2010

Keywords

Comments

Partial sums of number of trees on n labeled nodes. The subsequence of primes in this sequence begin: 2, 58550453144611, no more through a(30).

Examples

			a(19) = 1 + 1 + 1 + 3 + 16 + 125 + 1296 + 16807 + 262144 + 4782969 + 100000000 + 2357947691 + 61917364224 + 1792160394037 + 56693912375296 + 1946195068359375 + 72057594037927936 + 2862423051509815793 + 121439531096594251776 + 5480386857784802185939.
		

Crossrefs

Formula

a(n) = SUM[i=0..n] A000272(i) = SUM[i=0..n] i^(i-2).

A224917 Stable k-tree numbers.

Original entry on oeis.org

1, 1, 1, 2, 5, 15, 64, 342, 2344, 19137, 181204, 1927017, 22652805, 290392448, 4022276630, 59749492128, 946174967813, 15892939156209
Offset: 0

Views

Author

Ira M. Gessel, Apr 19 2013

Keywords

Comments

a(n) is the number of unlabeled k-trees with n+k vertices for all k >= n-2.
A k-tree is recursively defined as follows: The complete graph K_k is a k-tree and a k-tree on n+1 vertices is obtained by joining a vertex to a k-clique in a k-tree on n vertices.

Crossrefs

Cf. A000055 (unlabeled trees), A054581 (unlabeled 2-trees), A078792 (unlabeled 3-trees), A078793 (unlabeled 4-trees), A201702 (unlabeled 5-trees), A202037 (unlabeled 6-trees).
Previous Showing 21-30 of 30 results.