A246468 Given a number of k digits x = d_(k)*10^(k-1) + d_(k-1)*10^(k-2) + … + d_(2)*10 + d_(1), consider y = p_(1)^d_(1)*p_(2)^d_(2)*…*p_(k)^d_(k), where p_(i) is the i-th prime. Sequence lists the numbers x such that y / x is an integer.
1, 2, 4, 8, 12, 16, 24, 36, 48, 54, 81, 96, 128, 135, 144, 162, 225, 288, 375, 486, 576, 625, 648, 675, 768, 972, 1296, 1575, 1875, 2187, 2268, 2625, 2646, 2688, 3087, 3136, 3375, 3528, 3675, 3888, 3969, 4116, 4374, 4802, 5145, 5292, 5488, 5625, 6048, 6174, 7056
Offset: 1
Examples
x = 48 -> y = 2^8*3^4 = 20736 and 20736 / 48 = 432. x = 972 -> y = 2^2*3^7*5^9 = 17085937500 and 17085937500 / 972 = 17578125.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..1000
Programs
-
Maple
with(numtheory):P:=proc(q) local a,b,k,n; for n from 1 to q do a:=n; b:=1; for k from 1 to ilog10(n)+1 do b:=b*ithprime(k)^(a mod 10); a:=trunc(a/10); od; if type(b/n,integer) then print(n); fi; od; end: P(10^9);
Comments