cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-53 of 53 results.

A263881 Numbers k such that k! is a "compact factorial", i.e., k! is in A169661.

Original entry on oeis.org

1, 2, 3, 6, 7, 10, 11
Offset: 1

Views

Author

Jonathan Sondow, Nov 17 2015

Keywords

Comments

Sequence linked to A050376.

Crossrefs

Formula

a(n)! = A169661(n).

A381886 Triangle read by rows: T(n, k) = Sum_{j=1..floor(log[k](n))} floor(n / k^j) if k >= 2, T(n, 1) = n, T(n, 0) = 0^n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 3, 1, 1, 0, 4, 3, 1, 1, 0, 5, 3, 1, 1, 1, 0, 6, 4, 2, 1, 1, 1, 0, 7, 4, 2, 1, 1, 1, 1, 0, 8, 7, 2, 2, 1, 1, 1, 1, 0, 9, 7, 4, 2, 1, 1, 1, 1, 1, 0, 10, 8, 4, 2, 2, 1, 1, 1, 1, 1, 0, 11, 8, 4, 2, 2, 1, 1, 1, 1, 1, 1, 0, 12, 10, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Peter Luschny, Apr 03 2025

Keywords

Examples

			Triangle starts:
  [ 0] 1;
  [ 1] 0,  1;
  [ 2] 0,  2,  1;
  [ 3] 0,  3,  1, 1;
  [ 4] 0,  4,  3, 1, 1;
  [ 5] 0,  5,  3, 1, 1, 1;
  [ 6] 0,  6,  4, 2, 1, 1, 1;
  [ 7] 0,  7,  4, 2, 1, 1, 1, 1;
  [ 8] 0,  8,  7, 2, 2, 1, 1, 1, 1;
  [ 9] 0,  9,  7, 4, 2, 1, 1, 1, 1, 1;
  [10] 0, 10,  8, 4, 2, 2, 1, 1, 1, 1, 1;
  [11] 0, 11,  8, 4, 2, 2, 1, 1, 1, 1, 1, 1;
  [12] 0, 12, 10, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1;
		

Crossrefs

Cf. A011371 (column 2), A054861 (column 3), A054893 (column 4), A027868 (column 5), A054895 (column 6), A054896 (column 7), A054897 (column 8), A054898 (column 9), A078651 (row sums).

Programs

  • Maple
    T := (n, b) -> local i; ifelse(b = 0, b^n, ifelse(b = 1, n, add(iquo(n, b^i), i = 1..floor(log(n, b))))): seq(seq(T(n, b), b = 0..n), n = 0..12);
    # Alternative:
    T := (n, k) -> local j; ifelse(k = 0, k^n, ifelse(k = 1, n, add(padic:-ordp(j, k), j = 1..n))): for n from 0 to 12 do seq(T(n, k), k = 0..n) od;
  • Mathematica
    T[n_, 0] := If[n == 0, 1, 0]; T[n_, 1] := n;
    T[n_, k_] := Last@Accumulate[IntegerExponent[Range[n], k]];
    Table[T[n, k], {n, 0, 12}, {k, 0, n}] // MatrixForm
    (* Alternative: *)
    T[n_, k_] := Sum[Floor[n/k^j], {j, Floor[Log[k, n]]}]; T[n_, 1] := n; T[n_, 0] := 0^n; T[0, 0] = 1; Flatten@ Table[T[n, k], {n, 0, 12}, {k, 0, n}] (* Michael De Vlieger, Apr 03 2025 *)
  • PARI
    T(n,k) = if (n==0, 1, if (n==1, k, if (k==0, 0, if (k==1, n, sum(j=1, n, valuation(j, k))))));
    row(n) = vector(n+1, k, T(n,k-1)); \\ Michel Marcus, Apr 04 2025
  • Python
    from math import log
    def T(n: int, b: int) -> int:
        return (b**n if b == 0 else n if b == 1 else
            sum(n // (b**i) for i in range(1, 1 + int(log(n, b)))))
    print([[T(n, b) for b in range(n+1)] for n in range(12)])
    
  • SageMath
    def T(n, b): return (b^n if b == 0 else n if b == 1 else sum(valuation(j, b) for j in (1..n)))
    print(flatten([[T(n, b) for b in range(n+1)] for n in srange(13)]))
    

Formula

T(n, k) = Sum_{j=1..n} valuation(j, k) for n >= 2.

A098094 T(n,k) = greatest e such that k^e divides n!, 2<=k<=n (triangle read by rows).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 4, 2, 2, 1, 2, 4, 2, 2, 1, 2, 1, 7, 2, 3, 1, 2, 1, 2, 7, 4, 3, 1, 4, 1, 2, 2, 8, 4, 4, 2, 4, 1, 2, 2, 2, 8, 4, 4, 2, 4, 1, 2, 2, 2, 1, 10, 5, 5, 2, 5, 1, 3, 2, 2, 1, 5, 10, 5, 5, 2, 5, 1, 3, 2, 2, 1, 5, 1, 11, 5, 5, 2, 5, 2, 3, 2, 2, 1, 5, 1, 2, 11, 6, 5, 3, 6, 2, 3, 3, 3, 1, 5, 1, 2, 3
Offset: 2

Views

Author

Reinhard Zumkeller, Sep 14 2004

Keywords

Examples

			Array begins:
  1
  1 1
  3 1 1
  3 1 1 1
  4 2 2 1 2
  ...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := IntegerExponent[n!, k];
    Table[T[n, k], {n, 2, 15}, {k, 2, n}] // Flatten (* Jean-François Alcover, Sep 15 2021 *)
  • PARI
    T(n,k) = valuation(n!, k); \\ Michel Marcus, Sep 15 2021

Formula

T(n,2) = A011371(n); T(n,3) = A054861(n) for n>2; T(n,n) = A011776(n).
Previous Showing 51-53 of 53 results.