cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A374538 a(n) is the sum of the squares of the unitary divisors of n that are exponentially odd numbers (A268335).

Original entry on oeis.org

1, 5, 10, 1, 26, 50, 50, 65, 1, 130, 122, 10, 170, 250, 260, 1, 290, 5, 362, 26, 500, 610, 530, 650, 1, 850, 730, 50, 842, 1300, 962, 1025, 1220, 1450, 1300, 1, 1370, 1810, 1700, 1690, 1682, 2500, 1850, 122, 26, 2650, 2210, 10, 1, 5, 2900, 170, 2810, 3650, 3172
Offset: 1

Views

Author

Amiram Eldar, Jul 11 2024

Keywords

Comments

The number of unitary divisors of n that are exponentially odd is A055076(n) and their sum is A358346(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + If[OddQ[e], p^(2*e), 0]; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + if(f[i, 2]%2,  f[i, 1]^(2*f[i, 2]), 0));}

Formula

a(n) = A034676(A350389(n)).
a(n) >= 1 with equality if and only if n is a square (A000290).
a(n) <= A374537(n) with equality if and only if n is squarefree (A005117).
Multiplicative with a(p^e) = p^(2*e) + 1 if e is odd, and 1 otherwise.
Dirichlet g.f.: zeta(s) * zeta(2*s-4) * Product_{p prime} (1 + 1/p^(s-2) - 1/p^(2*s-4) - 1/p^(2*s-2)).
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = zeta(2) * zeta(3) * Product_{p prime} (1 - 2/p^2 + 1/p^3 - 1/p^4 + 1/p^5) = 0.79482441214759383925... .

A380163 a(n) is the value of the Euler totient function when applied to the squarefree part of n.

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 6, 1, 1, 4, 10, 2, 12, 6, 8, 1, 16, 1, 18, 4, 12, 10, 22, 2, 1, 12, 2, 6, 28, 8, 30, 1, 20, 16, 24, 1, 36, 18, 24, 4, 40, 12, 42, 10, 4, 22, 46, 2, 1, 1, 32, 12, 52, 2, 40, 6, 36, 28, 58, 8, 60, 30, 6, 1, 48, 20, 66, 16, 44, 24, 70, 1, 72, 36
Offset: 1

Views

Author

Amiram Eldar, Jan 14 2025

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], p-1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] % 2, f[i, 1]-1, 1));}

Formula

a(n) = A000010(A007913(n)).
a(n) >= 1, with equality if and only if n is in A028982.
a(n) <= A000010(n), with equality if and only if n is squarefree (A005117).
Multiplicative with a(p^e) = p-1 if e is odd, and 1 otherwise.
Dirichlet g.f.: zeta(2*s) * Product_{p prime} (1 + 1/p^(s-1) - 1/p^s).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(4) * Product_{p prime} (1 - 2/p^2 + 1/p^3) = 0.46350438981962928756...

A328181 a(n) = (-1)^(bigomega(n) - omega(n)) * Sum_{d|n} (-1)^(bigomega(d) - omega(d)) * d.

Original entry on oeis.org

1, 3, 4, 1, 6, 12, 8, 7, 5, 18, 12, 4, 14, 24, 24, 9, 18, 15, 20, 6, 32, 36, 24, 28, 19, 42, 22, 8, 30, 72, 32, 23, 48, 54, 48, 5, 38, 60, 56, 42, 42, 96, 44, 12, 30, 72, 48, 36, 41, 57, 72, 14, 54, 66, 72, 56, 80, 90, 60, 24, 62, 96, 40, 41, 84, 144, 68, 18, 96, 144
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 06 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (-1)^(PrimeOmega[n] - PrimeNu[n]) Sum[(-1)^(PrimeOmega[d] - PrimeNu[d]) d, {d, Divisors[n]}]; Table[a[n], {n, 1, 70}]
    f[p_, e_] := (p^(e+1) - (-1)^e *(2*p+1))/(p+1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 02 2020 *)
  • PARI
    a(n) = (-1)^(bigomega(n)-omega(n))*sumdiv(n, d, (-1)^(bigomega(d)-omega(d))*d); \\ Michel Marcus, Oct 06 2019

Formula

a(p) = p + 1, where p is prime.
Multiplicative with a(p^e) = (p^(e+1) - (-1)^e*(2*p+1))/(p+1). - Amiram Eldar, Dec 02 2020
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/30) * Product_{p prime} (1 + 2/p^2 - 2/p^3) = 0.5507877576... . - Amiram Eldar, Nov 06 2022
Previous Showing 11-13 of 13 results.