cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A095421 Triangle read by rows: T(n,m) = number of m-block proper covers (without empty blocks and without multiple blocks) of a labeled n-set (n>=2, 2<=m<=2^n-2).

Original entry on oeis.org

1, 6, 17, 15, 6, 1, 25, 230, 861, 1918, 2975, 3428, 3003, 2002, 1001, 364, 91, 14, 1, 90, 2125, 20930, 127701, 568820, 2003635, 5820750, 14282125, 30030000, 54620475, 86490950, 119759325, 145422600, 155117515, 145422675, 119759850, 86493225
Offset: 2

Views

Author

Goran Kilibarda, Vladeta Jovovic, Jun 04 2004

Keywords

Examples

			1;
6,17,15,6,1;
25,230,861,1918,2975,3428,3003,2002,1001,364,91,14,1;
...
		

Crossrefs

Programs

  • Mathematica
    T[n_, m_] := Sum[(-1)^(n - i)*Binomial[n, i]*Binomial[2^i - 1, m], {i, 1, n}] - Binomial[2^n - 2, m - 1]; Table[T[n, m], {n, 2, 10}, {m, 2, 2^n - 2}] // Flatten (* G. C. Greubel, Oct 07 2017 *)
  • PARI
    for(n=2,6, for(m=2, 2^n -2, print1(sum(j=1,n, (-1)^(n-j)* binomial(n, j)*binomial(2^j -1, m)), ", "))) \\ G. C. Greubel, Oct 07 2017

Formula

T(n, m) = Sum((-1)^(n-i)*binomial(n, i)*binomial(2^i-1, m), i=1..n) - binomial(2^n-2, m-1).

A095153 Number of 4-block covers of a labeled n-set.

Original entry on oeis.org

35, 1225, 24990, 426650, 6779185, 104394675, 1585021340, 23909487700, 359582866335, 5400330984125, 81051093085690, 1216089331752750, 18243600636165485, 273669834496409575, 4105158293128058040, 61578149829707541800, 923677675484159636635
Offset: 3

Views

Author

Vladeta Jovovic, May 31 2004

Keywords

Crossrefs

Column of A055154.

Programs

  • Magma
    [(-50 + 35*3^n - 10*7^n + 15^n)/24 : n in [3..20]]; // Wesley Ivan Hurt, Aug 26 2014
  • Maple
    A095153:=n->(-50+35*3^n-10*7^n+15^n)/24: seq(A095153(n), n=3..20); # Wesley Ivan Hurt, Aug 26 2014
  • Mathematica
    nn = 19; Table[Sum[(-1)^i Binomial[n, i] Binomial[2^(n - i) - 1, 4], {i, 0, n}], {n, 3, nn}] (* Geoffrey Critzer, Aug 24 2014 *)
    Table[(-50 + 35*3^n - 10*7^n + 15^n)/24, {n, 3, 20}] (* Wesley Ivan Hurt, Aug 26 2014 *)

Formula

a(n) = (1/4!)*(-50+35*3^n-10*7^n+15^n).
G.f.: 35*x^3*(9*x+1) / ((x-1)*(3*x-1)*(7*x-1)*(15*x-1)). - Colin Barker, Jul 13 2013
a(n) = Sum_{i=0..n} (-1)^i * C(n,i) * C(2^(n-i)-1,4). - Geoffrey Critzer, Aug 24 2014
a(n) = 26*a(n-1)-196*a(n-2)+486*a(n-3)-315*a(n-4). - Wesley Ivan Hurt, Aug 26 2014

Extensions

More terms from Colin Barker, Jul 13 2013

A095155 Number of 6-block covers of a labeled n-set.

Original entry on oeis.org

7, 4977, 711326, 63602770, 4709047749, 320401872035, 20951777849212, 1344192783541860, 85442420316605891, 5406486257577661333, 341342273242841583258, 21527330224106110255670, 1356927944579525164818433, 85508356311211819638169671, 5387705299223777670172444664
Offset: 3

Views

Author

Vladeta Jovovic, May 31 2004

Keywords

Crossrefs

Column of A055154.

Programs

  • Magma
    [(-1764+1624*3^n-735*7^n+175*15^n-21*31^n+63^n)/720 : n in [3..20]]; // Wesley Ivan Hurt, Aug 26 2014
  • Maple
    A095155:=n->(-1764+1624*3^n-735*7^n+175*15^n-21*31^n+63^n)/720: seq(A095155(n), n=3..20); # Wesley Ivan Hurt, Aug 26 2014
  • Mathematica
    nn = 19; Table[ Sum[(-1)^i Binomial[n, i] Binomial[2^(n - i) - 1, 6], {i, 0, n}], {n, 3, nn}] (* Geoffrey Critzer, Aug 24 2014 *)
    Table[(-1764 + 1624*3^n - 735*7^n + 175*15^n - 21*31^n + 63^n)/720, {n, 3, 20}] (* Wesley Ivan Hurt, Aug 26 2014 *)

Formula

a(n) = (1/6!)*(-1764+1624*3^n-735*7^n+175*15^n-21*31^n+63^n).
G.f.: 7*x^3*(87885*x^3+20891*x^2+591*x+1) / ((x-1)*(3*x-1)*(7*x-1)*(15*x-1)*(31*x-1)*(63*x-1)). - Colin Barker, Jul 12 2013
a(n) = sum(i=0..n, (-1)^i * C(n,i) * C(2^(n-i)-1,6) ). - Geoffrey Critzer, Aug 24 2014
a(n) = 120*a(n-1)-4593(n-2)+69688*a(n-3)-428787*a(n-4)+978768*a(n-5)-615195*a(n-6). - Wesley Ivan Hurt, Aug 26 2014

Extensions

More terms from Colin Barker, Jul 12 2013

A095152 Number of 3-block covers of a labeled n-set.

Original entry on oeis.org

1, 32, 321, 2560, 18881, 135072, 954241, 6705920, 47020161, 329377312, 2306349761, 16146574080, 113032395841, 791245902752, 5538778714881, 38771623191040, 271401878897921, 1899814701967392, 13298707562817601, 93090966886860800, 651636810049438401
Offset: 2

Views

Author

Vladeta Jovovic, May 31 2004

Keywords

Crossrefs

Column of A055154.

Programs

  • Magma
    [(11-6*3^n+7^n)/6 : n in [2..30]]; // Wesley Ivan Hurt, Aug 26 2014
  • Maple
    seq((11-6*3^n+7^n)/6, n=2..50); # Robert Israel, Aug 25 2014
  • Mathematica
    nn = 19; Table[Sum[(-1)^i Binomial[n, i] Binomial[2^(n - i) - 1, 3], {i, 0, n}], {n, 2, nn}] (* Geoffrey Critzer, Aug 24 2014 *)
    Table[(11 - 6*3^n + 7^n)/6, {n, 2, 20}] (* Wesley Ivan Hurt, Aug 26 2014 *)

Formula

a(n) = (1/3!)*(11-6*3^n+7^n).
a(n) = 11*a(n-1)-31*a(n-2)+21*a(n-3). G.f.: -x^2*(21*x+1) / ((x-1)*(3*x-1)*(7*x-1)). - Colin Barker, Jul 12 2013
a(n) = sum(i=0..n, (-1)^i * C(n,i) * C(2^(n-i)-1,3) ). - Geoffrey Critzer, Aug 24 2014

Extensions

More terms from Colin Barker, Jul 12 2013

A095154 Number of 5-block covers of a labeled n-set.

Original entry on oeis.org

21, 2919, 155106, 6054006, 208493607, 6791135085, 215553311652, 6758354401932, 210657488261913, 6547648042583571, 203236346721890118, 6304217491485837378, 195489116558570607339, 6061038320388658194777, 187905324183802270088904, 5825262097993829801550744
Offset: 3

Views

Author

Vladeta Jovovic, May 31 2004

Keywords

Crossrefs

Column of A055154.

Programs

  • Magma
    [(274-225*3^n+85*7^n-15*15^n+31^n)/120 : n in [3..20]]; // Wesley Ivan Hurt, Aug 25 2014
  • Maple
    A095154:=n->(274-225*3^n+85*7^n-15*15^n+31^n)/120: seq(A095154(n), n=3..20); # Wesley Ivan Hurt, Aug 25 2014
  • Mathematica
    nn = 19; Table[Sum[(-1)^i Binomial[n, i] Binomial[2^(n - i) - 1, 5], {i, 0, n}], {n, 3, nn}] (* Geoffrey Critzer, Aug 24 2014 *)
    Table[(274 - 225*3^n + 85*7^n - 15*15^n + 31^n)/120, {n, 3, 20}] (* Wesley Ivan Hurt, Aug 25 2014 *)

Formula

a(n) = (1/5!)*(274-225*3^n+85*7^n-15*15^n+31^n).
G.f.: -21*x^3*(465*x^2+82*x+1) / ((x-1)*(3*x-1)*(7*x-1)*(15*x-1)*(31*x-1)). - Colin Barker, Jul 13 2013
a(n) = Sum_{i=0..n} (-1)^i * C(n,i) * C(2^(n-i)-1,5). - Geoffrey Critzer, Aug 24 2014
a(n) = 57*a(n-1)-1002*a(n-2)+6562*a(n-3)-15381*a(n-4)+9765*a(n-5). - Wesley Ivan Hurt, Aug 25 2014

Extensions

More terms from Colin Barker, Jul 13 2013
Previous Showing 11-15 of 15 results.