cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A055312 Number of labeled rooted trees with n nodes and 11 leaves.

Original entry on oeis.org

12, 319332, 571389000, 340433566200, 110475588787200, 24370164778901760, 4123399022616706560, 576081026260420262400, 69763488659968731264000, 7574128968889436413824000, 755406265592909947874457600
Offset: 12

Views

Author

Christian G. Bower, May 11 2000

Keywords

Crossrefs

Column 11 of A055302.

Programs

  • Magma
    [Factorial(n)*(n-11)*(n-10)*(n-9)*(n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(99*n^9 - 8316*n^8 + 307494*n^7 - 6562248*n^6 + 88967571*n^5 - 793483724*n^4 + 4647393828*n^3 - 17199472048*n^2 + 36398452992*n - 33443020800)/14684322099363840000: n in [12..25]]; // Vincenzo Librandi, Jul 25 2014
  • Mathematica
    Table[n! * (n-11)*(n-10)*(n-9)*(n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(99*n^9 - 8316*n^8 + 307494*n^7 - 6562248*n^6 + 88967571*n^5 - 793483724*n^4 + 4647393828*n^3 - 17199472048*n^2 + 36398452992*n - 33443020800)/14684322099363840000,{n,12,25}] (* Vaclav Kotesovec, Jul 25 2014 *)

Formula

a(n) = n! * (n-11)*(n-10)*(n-9)*(n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(99*n^9 - 8316*n^8 + 307494*n^7 - 6562248*n^6 + 88967571*n^5 - 793483724*n^4 + 4647393828*n^3 - 17199472048*n^2 + 36398452992*n - 33443020800)/14684322099363840000. - Vaclav Kotesovec, Jul 25 2014

A217763 Triangular array read by rows: T(n,k) is the number of simple labeled graphs on n nodes with unicyclic components having exactly k nodes with degree 1; n>=3, 0<=k<=n-3.

Original entry on oeis.org

1, 3, 12, 12, 90, 120, 70, 600, 1800, 1200, 465, 4725, 19530, 31500, 12600, 3507, 42168, 211680, 529200, 529200, 141120, 30016, 414288, 2451456, 7902720, 13124160, 8890560, 1693440, 286884, 4460760, 30413880, 117573120, 266716800, 312439680, 152409600, 21772800
Offset: 3

Views

Author

Geoffrey Critzer, Mar 23 2013

Keywords

Comments

Column k=0 is A001205.
Row sums are A137916.

Examples

			  ....o-o..........o-o......
  ....| |..........|\ ......
  ....o-o..........o-o......
  T(4,0)=3 because the graph on the left has 4 nodes and 0 nodes with degree 1. It has 3 labelings.
  T(4,1)=12 because the graph on the right has 4 nodes and 1 node with degree 1.  It has 12 labelings.
1,
3,     12,
12,    90,     120,
70,    600,    1800,    1200,
465,   4725,   19530,   31500,   12600,
3507,  42168,  211680,  529200,  529200,   141120,
30016, 414288, 2451456, 7902720, 13124160, 8890560, 1693440.
		

Programs

  • Mathematica
    nn=10;f[list_]:=Select[list,#>0&];t=Sum[Sum[n!/k! StirlingS2[n-1,n-k]y^k x^n/n!,{k,1,n}],{n,0,nn}];Map[Reverse,Map[f,Drop[Range[0,nn]!CoefficientList[Series[ Exp[Log[1/(1-t)]/2-t/2-t^2/4],{x,0,nn}],{x,y}],3]]]//Grid

Formula

exp(A(B(x,y)), where A(x) is e.g.f. for A137916 and B(x,y) is e.g.f. for A055302, gives T(n,n-k) (offset).

A231536 Triangular array read by rows. T(n,k) is the number of functions f:{1,2,...,n}->{1,2,...,n} whose functional digraph has exactly k nodes such that no nonrecurrent element is mapped into it. n >= 1, 1 <= k <= n.

Original entry on oeis.org

1, 2, 2, 6, 15, 6, 24, 108, 100, 24, 120, 840, 1340, 705, 120, 720, 7200, 17400, 15150, 5466, 720, 5040, 68040, 231000, 296100, 171402, 46921, 5040, 40320, 705600, 3198720, 5644800, 4687536, 2015272, 444648, 40320, 362880, 7983360, 46569600, 108168480, 121144464, 73191888, 25011576, 4625361, 362880
Offset: 1

Views

Author

Geoffrey Critzer, Nov 10 2013

Keywords

Examples

			T(3,3) = 6 because we have: (1,2,3),(2,1,3),(3,2,1),(1,3,2),(2,3,1),(3,1,2).  In these 6 functions represented as a word there are 3 (all) elements with zero nonrecurrent elements mapped to them.
1,
2, 2,
6, 15, 6,
24, 108, 100, 24,
120, 840, 1340, 705, 120,
720, 7200, 17400, 15150, 5466, 720
		

Crossrefs

Row sums give: A000312.
Column k=1 and main diagonal give: A000142.

Programs

  • Mathematica
    nn=6;Map[Select[#,#>0&]&,Drop[Range[0,nn]!CoefficientList[Series[1/(1- (-x+x y-ProductLog[-Exp[x (-1+y)] x])),{x,0,nn}],{x,y}],1]]//Grid

Formula

E.g.f.: 1/(1 - A(x,y)) where A(x,y) is the e.g.f. for A055302.

A284417 Triangular array read by rows. T(n,k) is the number of rooted labeled trees on n nodes with exactly k vertices whose unique descendent is a leaf, n >= 1, 0 <= k <= floor((n-1)/2) + delta_{2,n}.

Original entry on oeis.org

1, 0, 2, 3, 6, 16, 48, 145, 420, 60, 1536, 4800, 1440, 19579, 65730, 31500, 840, 290816, 1053696, 698880, 53760, 4942305, 19332936, 16367400, 2388960, 15120, 94689280, 399052800, 410296320, 93542400, 2419200, 2020278931, 9146127870, 11044008360, 3526261200, 200415600, 332640, 47523053568, 230339788800, 319018106880, 133013422080, 12986265600, 127733760
Offset: 1

Views

Author

Geoffrey Critzer, Mar 26 2017

Keywords

Comments

Column k=0 is A052318(n) for n>2.
Row sums = n^(n-1) = A000169(n).

Examples

			Triangle begins
       1,
       0,       2,
       3,       6,
      16,      48,
     145,     420,     60,
    1536,    4800,   1440,
   19579,   65730,  31500,   840,
  290816, 1053696, 698880, 53760,
  ...
T(3,1)=6 because there are 6 labeled rooted trees (paths) o-o-o and these 6 trees have 1 vertex whose only descendent is a leaf. T(3,0) = 3 because there are 3 labeled trees of the form
    o
   / \
  o   o
and these 3 trees have no such vertices.
		

Crossrefs

Cf. A055302.

Programs

  • Mathematica
    nn = 10; Range[0, nn]! CoefficientList[Series[-z^2 + u z^2 - ProductLog[-E^((-1 + u) z^2) z], {z, 0, nn}], {z, u}] // Grid

Formula

E.g.f. satisfies: A(x,y) = x exp(A(x,y)) - x^2 + y x^2.
Previous Showing 21-24 of 24 results.