cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 60 results.

A306338 Carmichael numbers k such that phi(k) divides (k-1)*lambda(k).

Original entry on oeis.org

561, 1105, 1729, 2465, 6601, 15841, 41041, 46657, 52633, 75361, 115921, 334153, 340561, 658801, 670033, 2455921, 2704801, 4903921, 5049001, 6049681, 6840001, 8355841, 9439201, 9582145, 9613297, 10402561, 11119105, 11205601, 11972017, 14469841, 15888313, 16778881
Offset: 1

Views

Author

Amiram Eldar and Thomas Ordowski, Feb 08 2019

Keywords

Comments

Carmichael numbers k such that A034380(k) divides k-1.
A proper subset of Carmichael numbers in A173703.
The number of terms below 10^k for k=1,2,...,18 is 0, 0, 1, 5, 10, 15, 25, 56, 101, 184, 310, 508, 814, 1265, 1964, 2990, 4486, 6704. Cf. A055553.
Composite numbers k such that lcm(lambda(k),phi(k)/lambda(k)) divides k-1.
Problem: are there infinitely many such numbers?

Crossrefs

Programs

  • Mathematica
    Select[Range[3, 100000, 2], !PrimeQ[#] && Divisible[#-1, c = CarmichaelLambda[#]] && Divisible[c*(#-1), EulerPhi[#]] &]

A308086 Carmichael numbers c such that c-4, c-2 and c+2 are primes.

Original entry on oeis.org

656601, 11512252145095521, 35151891169379601, 89283676825965441, 209606994019068801, 584047819872236721, 627126355430628801, 1107574117930742001, 1152431453119654401, 2990125943388676401, 6919232969930803761
Offset: 1

Views

Author

Rick L. Shepherd, May 11 2019

Keywords

Comments

Subsequence of A287591 (Carmichael numbers that are arithmetic means of cousin primes). Calculated from Amiram Eldar's table in that sequence. The Carmichael numbers here are contained within intervals defined by prime triples of the form (p, p+2, p+6); therefore, for each term, four consecutive odd numbers are prime, prime, Carmichael number (divisible by 3), then prime. None of the terms of A287591 available so far are contained within intervals defined by prime triplets of the form (p, p+4, p+6). Is that possible? If so, is it also possible for a Carmichael number to be immediately preceded and succeeded by twin primes, i.e., to be "contained" in a prime quadruplet? (Such Carmichael numbers would necessarily be multiples of 15.)

Examples

			656601 = 3*11*101*197 is a term because 656597 and 656599 are twin primes, 656601 is a Carmichael number, and 656603 is also a prime.
		

Crossrefs

Extensions

More terms from Amiram Eldar, Jul 02 2019

A309003 Carmichael numbers divisible by the sum of their prime factors, sopfr (A001414).

Original entry on oeis.org

3240392401, 13577445505, 14446721521, 84127131361, 203340265921, 241420757761, 334797586201, 381334973041, 461912170321, 1838314142785, 3636869821201, 10285271821441, 17624045440981, 18773053896961, 20137015596061, 24811804945201, 26863480687681, 35598629998801
Offset: 1

Views

Author

David James Sycamore, Jul 05 2019

Keywords

Comments

Intersection of A002997 and A308643.
Intersection of A002997 and A036844.

Examples

			3240392401 = 29*37*41*73*1009, A001414(3240392401)=1189 = 29*41.
		

Crossrefs

Programs

  • PARI
    sopfr(f) = f[, 1]~*f[, 2];
    isCarmichael(n, f)= bittest(n, 0) && !for(i=1, #f~, (f[i, 2]==1 && n%(f[i, 1]-1)==1)||return) && (#f~>1);
    isok(n) = my(f=factor(n)); isCarmichael(n, f) && !(n % sopfr(f)); \\ Michel Marcus, Jul 07 2019

A327787 a(n) is the smallest Carmichael number k such that gpf(p-1) = prime(n) for all prime factors p of k.

Original entry on oeis.org

1729, 252601, 1152271, 1615681, 4335241, 172947529, 214852609, 79624621, 178837201, 775368901, 686059921, 985052881, 5781222721, 10277275681, 84350561, 5255104513, 492559141, 74340674101, 9293756581, 1200778753, 129971289169, 2230305949, 851703301, 8714965001, 6693621481
Offset: 2

Views

Author

Daniel Suteu, Sep 25 2019

Keywords

Comments

The first term is the Hardy-Ramanujan number. - Omar E. Pol, Nov 25 2019

Examples

			a(2) = 1729 = (2*3 + 1)(2*2*3 + 1)(2*3*3 + 1).
a(3) = 252601 = (2*2*2*5 + 1)(2*2*3*5 + 1)(2*2*5*5 + 1).
a(4) = 1152271 = (2*3*7 + 1)(2*3*3*7 + 1)(2*3*5*7 + 1).
a(5) = 1615681 = (2*11 + 1)(2*3*3*11 + 1)(2*2*2*2*2*11 + 1).
		

Crossrefs

Cf. A002997 (Carmichael numbers), A006530 (gpf), A001235.

Programs

  • Mathematica
    carmQ[n_] := CompositeQ[n] && Divisible[n - 1, CarmichaelLambda[n]]; gpf[n_] := FactorInteger[n][[-1, 1]]; g[n_] := If[Length[(u = Union[gpf /@ (FactorInteger[n][[;; , 1]] - 1)])] == 1, u[[1]], 1]; m = 5; c = 0; k = 0; v = Table[0, {m}]; While[c < m, k++ If[! carmQ[k], Continue[]]; If[(p = g[k]) > 1, i = PrimePi[p] - 1; If[i <= m && v[[i]] == 0, c++; v[[i]] = k]]]; v (* Amiram Eldar, Oct 08 2019 *)
  • Perl
    use ntheory ":all"; sub a { my $p = nth_prime(shift); for(my $k = 1; ; ++$k) { return $k if (is_carmichael($k) and vecall { (factor($_-1))[-1] == $p } factor($k)) } }
    for my $n (2..10) { print "a($n) = ", a($n), "\n" }

A328939 Carmichael numbers that are products of primes p for which each p-1 is squarefree.

Original entry on oeis.org

10267951, 72108421, 111291181, 139952671, 1588247851, 6004532941, 7200256261, 8815102297, 9001235881, 10884042841, 15989367241, 18500666251, 23729234761, 34268731321, 34558584607, 37870128451, 74689102411, 77538554731, 121254376891, 149842746691, 187054437571
Offset: 1

Views

Author

Amiram Eldar, Oct 31 2019

Keywords

Comments

Shanks noted that among the first 300 Carmichael numbers only 3 are in this sequence.

Crossrefs

Cf. A002997.

Programs

  • Mathematica
    aQ[n_] := CompositeQ[n] && Divisible[n-1, CarmichaelLambda[n]] && AllTrue[FactorInteger[n][[;; , 1]] - 1, SquareFreeQ]; Select[Range[10^8], aQ]

A335336 Carmichael numbers k such that k+1 is divisible by gpf(k)+1, where gpf = A006530.

Original entry on oeis.org

687979968481, 1928376089641, 2638625591701, 3148470889201, 3152088903601, 14682521533681, 19656816822721, 37333372057201, 47003559452641, 80643055074121, 129235662445121, 140940741166849, 196945133626801, 336301807660741, 345186571310209, 439931062854361
Offset: 1

Views

Author

Daniel Suteu, Jun 04 2020

Keywords

Comments

Are there any Carmichael numbers k with exactly four prime factors such that k+1 is divisible by gpf(k)+1?
Richard J. McIntosh and Mitra Dipra found the following base 2 Fermat pseudoprimes with exactly four prime factors satisfying s-1 | k-1 and s+1 | k+1, where s is the largest prime factor of k: 988679226253951, 3143193486942417481, 44307784380481317090001.

Examples

			For k = 687979968481 = 13 * 29 * 71 * 181 * 211 * 673, which is a Carmichael number, we have gpf(k) = 673. Thereafter we have gpf(k)+1 = 2 * 337 and k+1 = 2 * 337 * 347 * 911 * 3229, satisfying gpf(k)+1 | k+1.
		

Crossrefs

A352987 Carmichael numbers (A002997) that are overpseudoprimes to base 2 (A141232).

Original entry on oeis.org

65700513721, 168003672409, 459814831561, 13685652197857, 34477679139751, 74031531351121, 92327722290241, 206175669172201, 704077371354601, 1882982959757929, 2901482064497017, 3715607011189609, 5516564718607489, 5636724028491697, 6137426373439681, 14987802403246609
Offset: 1

Views

Author

Daniel Suteu, May 06 2022

Keywords

Comments

If we define f(n) to be the smallest number in the sequence with n prime factors, then we have:
f(3) = 65700513721,
f(4) <= 84286331493236478328609,
f(5) <= 3848515708338676403444146123852434164444641.

Crossrefs

Intersection of A002997 and A141232.
Intersection of A291637 and A141232.

A232167 Number of composite integers k less than 10^n such that lambda(k) divides 2k-2, where lambda is the Carmichael lambda function (A002322).

Original entry on oeis.org

3, 9, 16, 31, 68, 149, 314, 724, 1670, 4063
Offset: 1

Views

Author

Keywords

Comments

Conjecture: A055553(n)/a(n) has a limit strictly smaller than 1 as n tends to infinity.

Crossrefs

Programs

  • Mathematica
    For[k = 4; cnt = 0, True, k++, If[CompositeQ[k] && Divisible[2k-2, CarmichaelLambda[k]], cnt++]; If[IntegerQ[n = Log[10, k+1]], Print[n, " ", cnt]]]; (* Jean-François Alcover, Feb 16 2019 *)

Extensions

a(8)-a(10) from Giovanni Resta, Mar 03 2014

A263930 Number of quasi-Carmichael numbers less than 10^n.

Original entry on oeis.org

0, 2, 27, 165, 734, 3109, 11568, 40820, 137850, 457191
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Oct 30 2015

Keywords

Comments

For quasi-Carmichael numbers see A257750.

Examples

			a(1) = 0 because there are no quasi-Carmichael numbers below 10^1.
a(2) = 2 because there are two quasi-Carmichael numbers below 10^2, namely, 35 and 77.
		

Crossrefs

Programs

Extensions

a(8)-a(10) from Dana Jacobsen, Apr 27 2017

A328936 The number of imprimitive Carmichael numbers (A328935) below 10^n.

Original entry on oeis.org

4, 11, 25, 63, 134, 268, 508, 1013, 1901, 3773, 7208, 13834, 26353, 50343, 96122, 184354, 354218
Offset: 6

Views

Author

Amiram Eldar, Oct 31 2019

Keywords

Comments

Granville and Pomerance conjectured that most Carmichael numbers are primitive, i.e. lim_{n->oo} a(n)/A055553(n) = 0.

Examples

			a(6) = 4 since there are 4 imprimitive Carmichael numbers below 10^6: 294409, 399001, 488881, 512461.
		

Crossrefs

Extensions

a(20)-a(22) calculated using data from Claude Goutier and added by Amiram Eldar, Apr 22 2024
Previous Showing 51-60 of 60 results.