cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A302537 a(n) = (n^2 + 13*n + 2)/2.

Original entry on oeis.org

1, 8, 16, 25, 35, 46, 58, 71, 85, 100, 116, 133, 151, 170, 190, 211, 233, 256, 280, 305, 331, 358, 386, 415, 445, 476, 508, 541, 575, 610, 646, 683, 721, 760, 800, 841, 883, 926, 970, 1015, 1061, 1108, 1156, 1205, 1255, 1306, 1358, 1411, 1465, 1520, 1576
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of [1, 7, 1, 0, 0, 0, ...].
Numbers m > 0 such that 8*m + 161 is a square.

Examples

			Illustration of initial terms (by the formula a(n) = A052905(n) + 3*n):
.                                                                    o
.                                                                  o o
.                                                    o           o o o
.                                                  o o         o o o o
.                                      o         o o o       o o o o o
.                                    o o       o o o o     o o o o o o
.                          o       o o o     o o o o o   o . . . . . o
.                        o o     o o o o   o . . . . o   o . . . . . o
.                o     o o o   o . . . o   o . . . . o   o . . . . . o
.              o o   o . . o   o . . . o   o . . . . o   o . . . . . o
.        o   o . o   o . . o   o . . . o   o . . . . o   o . . . . . o
.      o o   o . o   o . . o   o . . . o   o . . . . o   o . . . . . o
.  o   o o   o o o   o o o o   o o o o o   o o o o o o   o o o o o o o
.        o     o o     o o o     o o o o     o o o o o     o o o o o o
.        o     o o     o o o     o o o o     o o o o o     o o o o o o
.        o     o o     o o o     o o o o     o o o o o     o o o o o o
----------------------------------------------------------------------
.  1     8      16        25          35            46              58
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 1994.

Crossrefs

Sequences whose n-th terms are of the form binomial(n, 2) + n*k + 1:
A152947 (k = 0); A000124 (k = 1); A000217 (k = 2); A034856 (k = 3);
A052905 (k = 4); A051936 (k = 5); A246172 (k = 6).

Programs

  • Magma
    A302537:= func< n | ((n+1)^2 +12*n +1)/2 >;
    [A302537(n): n in [0..50]]; // G. C. Greubel, Jan 21 2025
    
  • Maple
    a := n -> (n^2 + 13*n + 2)/2;
    seq(a(n), n = 0 .. 100);
  • Mathematica
    Table[(n^2 + 13 n + 2)/2, {n, 0, 100}]
    CoefficientList[ Series[(5x^2 - 5x - 1)/(x - 1)^3, {x, 0, 50}], x] (* or *)
    LinearRecurrence[{3, -3, 1}, {1, 8, 16}, 51] (* Robert G. Wilson v, May 19 2018 *)
  • Maxima
    makelist((n^2 + 13*n + 2)/2, n, 0, 100);
    
  • PARI
    a(n) = (n^2 + 13*n + 2)/2; \\ Altug Alkan, Apr 12 2018
    
  • Python
    def A302537(n): return (n**2 + 13*n + 2)//2
    print([A302537(n) for n in range(51)]) # G. C. Greubel, Jan 21 2025

Formula

a(n) = binomial(n + 1, 2) + 6*n + 1 = binomial(n, 2) + 7*n + 1.
a(n) = a(n-1) + n + 6.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3, where a(0) = 1, a(1) = 8 and a(2) = 16.
a(n) = 2*a(n-1) - a(n-2) + 1.
a(n) = A004120(n+1) for n > 1.
a(n) = A056119(n) + 1.
a(n) = A152947(n+1) + A008589(n).
a(n) = A060544(n+1) - A002939(n).
a(n) = A000578(n+1) - A162261(n) for n > 0.
G.f.: (1 + 5*x - 5*x^2)/(1 - x)^3.
E.g.f.: (1/2)*(2 + 14*x + x^2)*exp(x).
Sum_{n>=0} 1/a(n) = 24097/45220 + 2*Pi*tan(sqrt(161)*Pi/2) / sqrt(161) = 1.4630922534498496... - Vaclav Kotesovec, Apr 11 2018

A174183 a(n) is the period k such that binomial(m, n) (mod 10) = binomial(m + k, n) (mod 10).

Original entry on oeis.org

1, 10, 20, 60, 240, 1200, 7200, 50400, 403200, 3628800, 36288000, 399168000, 4790016000, 62270208000, 871782912000, 13076743680000, 209227898880000, 3556874280960000, 64023737057280000, 1216451004088320000
Offset: 0

Views

Author

Michel Lagneau, Mar 11 2010

Keywords

Comments

a(n) is the period (mod 10) of the numbers in each column n of Pascal's triangle.

Examples

			x(0)= 0.C(1,0)C(2,0)C(3,0) ... = 0.11111111111... and p(0)=1 ;
x(1)= 0.C(1,1)C(2,1)C(3,1) ... = 0.12345678901234... and p(1) = 10 ;
x(2)= 0.C(2,2)C(3,2)C(4,2) ... = 0.13605186556815063100 13605186556815063100... and p(2)=20.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.

Crossrefs

Programs

  • Mathematica
    Join[{1},Array[10#!&,20]] (* Harvey P. Dale, Feb 18 2018 *)
  • Python
    from math import factorial
    def A174183(n): return 10*factorial(n) if n else 1 # Chai Wah Wu, Aug 07 2025

Formula

a(0)=1, and a(n) = 10 * n! for n >= 1.

Extensions

Additional comments, and errors in examples corrected by Michel Lagneau, May 07 2010
Previous Showing 11-12 of 12 results.