A056333
Number of primitive (aperiodic) reversible string structures with n beads using a maximum of four different colors.
Original entry on oeis.org
1, 1, 3, 9, 30, 102, 378, 1440, 5607, 22155, 87978, 350775, 1400490, 5597487, 22379145, 89498880, 357952170, 1431737433, 5726775978, 22906819575, 91626580269, 366505186047, 1466017950378, 5864067254880
Offset: 1
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
A320934
Number of chiral pairs of color patterns (set partitions) for a row of length n using 4 or fewer colors (subsets).
Original entry on oeis.org
0, 0, 1, 4, 20, 80, 336, 1344, 5440, 21760, 87296, 349184, 1397760, 5591040, 22368256, 89473024, 357908480, 1431633920, 5726601216, 22906404864, 91625881600, 366503526400, 1466015154176, 5864060616704, 23456246661120, 93824986644480, 375299963355136, 1501199853420544, 6004799480791040
Offset: 1
For a(4)=4, the chiral pairs are AAAB-ABBB, AABA-ABAA, AABC-ABCC, and ABAC-ABCB.
-
Table[(4^n - 4^Floor[n/2+1])/48, {n, 40}] (* or *)
LinearRecurrence[{4, 4, -16}, {0, 0, 1}, 40] (* or *)
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
k=4; Table[Sum[StirlingS2[n,j]-Ach[n,j],{j,k}]/2,{n,40}]
CoefficientList[Series[x^2/((-1 + 4 x) (-1 + 4 x^2)), {x, 0, 50}], x] (* Stefano Spezia, Oct 29 2018 *)
Comments