cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A146949 Primes with a prime number of partitions into prime parts.

Original entry on oeis.org

5, 7, 17, 19, 73, 103, 263, 307, 653, 673, 743, 823, 839, 1109, 1327, 2647, 4391, 4621, 4967, 6389, 6661, 6829, 6871, 12227, 12269, 18839, 19861, 20663, 23497, 23593, 23833, 24499, 25411, 28771, 29717, 36599, 40949, 41617, 46889, 47353, 49033, 50093, 50587, 50599, 51511
Offset: 1

Views

Author

Lekraj Beedassy, Nov 03 2008

Keywords

Crossrefs

Cf. A056768.

Programs

  • Maple
    g:=1/(product(1-x^ithprime(j),j=1..500)): gser:= series(g,x=0,3575): a:= proc (n) if isprime(coeff(gser,x,ithprime(n)))=true then ithprime(n) else end if end proc: seq(a(n),n=1..3570); # Emeric Deutsch, Nov 09 2008
    ##
    b:= proc(n, i) local r, m; if n<0 or i<2 then 0 elif n<6 or i<6 then m:= iquo(n, 30, 'r'); (5+15*m+r)*m+ [1, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 7, 8, 9, 9, 11, 11, 12, 13, 14, 15, 16, 17, 18, 19][r+1] else b(n, i):= b(n-i, i) +b(n, prevprime(i)) fi end: a:= proc(n) local k; k:= `if`(n=1, 3, nextprime(a(n-1))); while not (isprime(b(k, k))) do k:= nextprime(k) od; a(n):= k end: seq(a(n), n=1..15);  # Alois P. Heinz, Jun 26 2009
  • Mathematica
    jmax = 1000;
    pmax = Prime[jmax];
    g = 1/Product[1-x^Prime[j], {j, 1, jmax}];
    cc = CoefficientList[g + O[x]^pmax, x];
    Select[Transpose[{cc, Range[0, Length[cc]-1]}], PrimeQ[#[[1]]] && PrimeQ[#[[2]]]&][[All, 2]] (* Jean-François Alcover, Dec 06 2020, after Emeric Deutsch *)

Formula

Prime number 7 = 5 + 2 = 3 + 2 + 2, with 3 (prime number) partitions into prime parts. So 7 is in the sequence. Similarly with 17 = 13+2+2 = 11+3+3 = 11+2+2+2 = 7+7+3 = 7+5+5 = 7+5+3+2 = 7+3+3+2+2 = 7+2+2+2+2+2 = 5+5+5+2 = 5+5+3+2+2 = 5+3+3+3+3 = 5+3+3+2+2+2 = 5+2+2+2+2+2+2 = 3+3+3+3+3+2 = 3+3+3+2+2+2+2 = 3+2+2+2+2+2+2+2, having 17 (prime number) partitions into prime parts.

Extensions

Edited. - Lekraj Beedassy, Nov 08 2008
More terms from Emeric Deutsch, Nov 09 2008
a(17) - a(28) from Alois P. Heinz, Jun 26 2009
Further terms from Max Alekseyev, May 15 2011

A276557 Number of partitions of prime(n)^2 into squares of primes.

Original entry on oeis.org

1, 1, 2, 4, 17, 39, 191, 410, 1771, 13805, 26459, 170897, 556698, 988053, 3019206, 15074481, 70202708, 115639004, 498047289, 1281427052, 2039282754, 7981334946, 19374343049, 71015123687, 380553620426, 862797574415, 1292837481584, 2875949125749, 4270259833946, 9334145396729
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 14 2017

Keywords

Examples

			a(3) = 2 because third square of prime is 25 and we have [25], [9, 4, 4, 4, 4].
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - x^Prime[k]^2), {k, 1, n}], {x, 0, Prime[n]^2}], {n, 1, 30}]

Formula

a(n) = [x^(prime(n)^2)] Product_{k>=1} 1/(1 - x^(prime(k)^2)).
a(n) = A090677(A001248(n)).
Previous Showing 21-22 of 22 results.