cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-33 of 33 results.

A056862 Triangle T(n,k) is the number of restricted growth strings (RGS) of set partitions of {1..n} that have a decrease at index k (1<=k

Original entry on oeis.org

0, 0, 1, 0, 3, 4, 0, 10, 14, 16, 0, 37, 54, 63, 68, 0, 151, 228, 271, 296, 311, 0, 674, 1046, 1264, 1396, 1478, 1530, 0, 3263, 5178, 6349, 7084, 7555, 7862, 8065, 0, 17007, 27488, 34139, 38448, 41287, 43184, 44467, 45344, 0, 94828, 155642, 195494, 222044, 239976, 252230, 260690, 266584, 270724
Offset: 2

Views

Author

Winston C. Yang (winston(AT)cs.wisc.edu), Aug 31 2000

Keywords

Comments

Number of falls s_k > s_{k+1} in a RGS [s_1, ..., s_n] of a set partition of {1, ..., n}, where s_i is the subset containing i, s_1 = 1 and s_i <= 1 + max(j
Note that the number of equalities at any index is B(n-1), where B(n) are the Bell numbers. - Franklin T. Adams-Watters, Jun 08 2006

Examples

			For example, [1, 2, 1, 2, 2, 3] is the RGS of a set partition of {1, 2, 3, 4, 5, 6} and has 1 fall, at i = 2.
0;
0,1;
0,3,4;
0,10,14,16;
0,37,54,63,68;
0,151,228,271,296,311;
0,674,1046,1264,1396,1478,1530;
0,3263,5178,6349,7084,7555,7862,8065;
0,17007,27488,34139,38448,41287,43184,44467,45344;
0,94828,155642,195494,222044,239976,252230,260690,266584,270724;
0,562595,935534,1186845,1358452,1476959,1559602,1617737,1658952,1688379, 1709526;
		

References

  • W. C. Yang, Conjectures on some sequences involving set partitions and Bell numbers, preprint, 2000. [apparently unpublished, Joerg Arndt, Mar 05 2016]

Crossrefs

Cf. Bell numbers A005493.

Programs

  • Maple
    b:= proc(n, i, m, t) option remember; `if`(n=0, [1, 0],
          add((p-> p+[0, `if`(j (p-> seq(coeff(p, x, i), i=1..n-1))(b(n, 1, 0$2)[2]):
    seq(T(n), n=2..12);  # Alois P. Heinz, Mar 24 2016
  • Mathematica
    b[n_, i_, m_, t_] := b[n, i, m, t] = If[n == 0, {1, 0}, Sum[Function[p, p + {0, If[jJean-François Alcover, May 23 2016, after Alois P. Heinz *)

Formula

T(n,k) = B(n) - B(n-1) - A056861(n,k). - Franklin T. Adams-Watters, Jun 08 2006
Conjecture: T(n,3) = 2*A011965(n). - R. J. Mathar, Mar 08 2016

Extensions

Edited and extended by Franklin T. Adams-Watters, Jun 08 2006
Clarified definition and edited comment and example, Joerg Arndt, Mar 08 2016
Data corrected, R. J. Mathar, Mar 08 2016

A363732 Triangle read by rows. The triangle algorithm applied to (-1)^n/n!.

Original entry on oeis.org

1, -2, 1, 5, -4, 1, -15, 15, -6, 1, 52, -60, 30, -8, 1, -203, 260, -150, 50, -10, 1, 877, -1218, 780, -300, 75, -12, 1, -4140, 6139, -4263, 1820, -525, 105, -14, 1, 21147, -33120, 24556, -11368, 3640, -840, 140, -16, 1, -115975, 190323, -149040, 73668, -25578, 6552, -1260, 180, -18, 1
Offset: 0

Author

Peter Luschny, Jun 18 2023

Keywords

Comments

The triangle algorithm, as understood here, is a transformation that maps a sequence of integers (a(n) : n >= 0) to a polynomial sequence. A polynomial sequence is a sequence of polynomials (P(n,x) : n >= 0) with degree(P(n, x)) = n for all n >= 0.
The polynomials P(n, x) are recursively defined by P(n, x) = p(n, 0, x), where the initial sequence is p(0, m, x) = a(m), and for n > 0 is given by
p(n, m, x) = (m + 1)*p(n - 1, m + 1, x) - (m + 1 - x)*p(n - 1, m, x).
Here we identify the polynomial sequence with the infinite lower triangular array of its coefficients, T(n, k) = [x^k] P(n, x). We call the mapping (a(n) : n >= 0) -> (T(n, k) : 0 <= k <= n) the 'triangle algorithm', following the lead of Kawasaki and Ohno.
Evaluating P(n, x) at different values of x gives rise to a multitude of other sequences; in particular, the transformation a(n) -> b(n) = P(n, 1) will be called the Akiyama-Tanigawa transform of a.
The triangle algorithm was studied by Akiyama and Tanigawa, Chen, Imatomi, Arakawa and Kaneko, Kawasaki and Ohno, and others, at first in connection with the Bernoulli and Poly-Bernoulli numbers.
.
The paradigmatic examples are:
a(n) = 1 -> x^n, the standard base of polynomials, A023531.
a(n) = n + 1 -> binomial(n, k), Pascal triangle, A007318.
a(n) = n + 1 -> P(n, 1) powers of 2, A000079.
a(n) = n + 1 -> P(n, 0) the all 1's sequence A000012.
a(n) = 2^n -> [x^k] P(n, x), A154921.
a(n) = 2^n -> P(n, 0) Fubini numbers, A000670.
a(n) = 2^n -> P(n, 1) ordered set partitions of subsets of [n], A000629.
a(n) = 2^n -> P(n,-1) osp. of [n] with even number of blocks, A052841.
a(n) = 1 / (n + 1) -> [x^k] B(n, x), Bernoulli polynomials, A196838/A196839.
a(n) = 1 / (n + 1) -> B(n, 1), the Bernoulli numbers, A164555/A027642.
a(n) = Chen(n) -> skp(n, x), Swiss-Knife polynomials, A153641.
a(n) = Chen(n) -> P(n, 0), 2^n*Euler(n, 1/2) = Euler(n), A122045.
a(n) = Chen(n) -> P(n, 1), 2^n*Euler(n, 1), A155585.
a(n) = (-1)^n/n! -> [x^k] P(n, x) this "Bell" triangle.
a(n) = (-1)^n/n! -> (-1)^n*P(n, 1) = Bell(n), A000110.
a(n) = (-1)^n/n! -> (-1)^n*P(n,-1) = 2-Bell(n), A005493.
a(n) = 1/n! -> (-1)^n*P(n, 1) = complementary Bell(n), A000587.
a(n) = 1/n! -> (-1)^n*P(n,-1) = complementary 2-Bell(n), A074051.
(For Chen's sequence see A363524.)
.
The present sequence deals with the case of the Bell numbers. In contrast to Aitken's array A011971 and its variants A123346 and A011972, the Bell numbers do not appear as a column of the triangle but as row sums (times (-1)^n), i.e., as values of the associated polynomials at x = 1. Comparing this with a similar situation with the Bernoulli numbers/polynomials, our triangle could be viewed as a more organic generalization of the Bell numbers. Indeed, the names 'Bell triangle' and 'Bell polynomials' would be justified here; but these are already assigned to other concepts.

Examples

			The triangle T(n, k) starts:
  [0]     1;
  [1]    -2,      1;
  [2]     5,     -4,     1;
  [3]   -15,     15,    -6,      1;
  [4]    52,    -60,    30,     -8,    1;
  [5]  -203,    260,  -150,     50,  -10,    1;
  [6]   877,  -1218,   780,   -300,   75,  -12,   1;
  [7] -4140,   6139, -4263,   1820, -525,  105, -14,   1;
  [8] 21147, -33120, 24556, -11368, 3640, -840, 140, -16, 1;
		

Crossrefs

Cf. A293037 (row sums), A000110 (row sums, unsigned), A005493 (alternating row sums, signed).

Programs

  • Maple
    TA := proc(a, n, m, x) option remember; if n = 0 then a(m) else
    normal((m + 1)*TA(a, n - 1, m + 1, x) - (m + 1 - x)*TA(a, n - 1, m, x)) fi end:
    seq(seq(coeff(TA(n -> (-1)^n/n!, n, 0, x), x, k), k = 0..n), n = 0..10);
  • Mathematica
    (* rows[0..n], n[0..oo] *)
    (* row[n]= *)
    n=9;r={};For[a=n+1,a>0,a--,AppendTo[r,(-1)^(a+1)*Sum[StirlingS2[a,k],{k,0,a}]*Product[(2*(a+j))/(2*j+2),{j,0,n-a}]]];r
    (* columns[1..n], n[0..oo] *)
    (* column[n]= *)
    n=0;c={};For[a=1,a<15,a++,AppendTo[c,(-1)^(a+1)*Sum[StirlingS2[a,k],{k,0,a}]*Product[(2*(a+j-1))/(2*j),{j,1,n}]]];c
    (* sequence *)
    s={};For[n=0,n<15,n++,For[a=n+1,a>0,a--,AppendTo[s,(-1)^(a+1)*Sum[StirlingS2[a,k],{k,0,a}]*Product[(2*(a+j))/(2*j+2),{j,0,n-a}]]]];s
    (* Detlef Meya, Jun 22 2023 *)
  • SageMath
    def a(n): return (-1)^n / factorial(n)
    @cached_function
    def p(n, m):
        R = PolynomialRing(QQ, "x")
        if n == 0: return R(a(m))
        return R((m + 1)*p(n - 1, m + 1) - (m + 1 - x)*p(n - 1, m))
    for n in range(10): print(p(n, 0).list())

A056859 Triangle of number of falls in set partitions of n.

Original entry on oeis.org

1, 2, 0, 4, 1, 0, 8, 7, 0, 0, 16, 32, 4, 0, 0, 32, 121, 49, 1, 0, 0, 64, 411, 360, 42, 0, 0, 0, 128, 1304, 2062, 624, 22, 0, 0, 0, 256, 3949, 10163, 6042, 730, 7, 0, 0, 0, 512, 11567, 45298, 45810, 12170, 617, 1, 0, 0, 0, 1024, 33056, 187941, 296017, 141822, 18325, 385, 0, 0, 0, 0
Offset: 1

Author

Winston C. Yang (winston(AT)cs.wisc.edu), Aug 31 2000

Keywords

Comments

Number of falls s_i > s_{i+1} in a set partition {s_1, ..., s_n} of {1, ..., n}, where s_i is the subset containing i, s(1) = 1 and s(i) <= 1 + max of previous s(j)'s.
The maximum number of falls is in a set partition like 1,2,1,3,2,1,... - Franklin T. Adams-Watters, Jun 08 2006

Examples

			For example {1, 2, 1, 2, 2, 3} is a set partition of {1, 2, 3, 4, 5, 6} and has 1 fall, at i = 2.
T(n=3,f=0)=4 counts the partitions {1,1,1}, {1,1,2}, {1,2,2}, and {1,2,3}. T(n=3,f=1) counts the partition {1,2,1}. - _R. J. Mathar_, Mar 04 2016
1;
2,0;
4,1,0;
8,7,0,0;
16,32,4,0,0;
32,121,49,1,0,0;
64,411,360,42,0,0,0;
128,1304,2062,624,22,0,0,0;
256,3949,10163,6042,730,7,0,0,0;
512,11567,45298,45810,12170,617,1,0,0,0;
1024,33056,187941,296017,141822,18325,385,0,0,0,0;
2048,92721,739352,1708893,1318395,330407,21605,176,0,0,0,0;
		

References

  • W. C. Yang, Conjectures on some sequences involving set partitions and Bell numbers, preprint, 2000. [Apparently unpublished]

Crossrefs

Cf. A000110 (row sums).

Programs

  • Maple
    b:= proc(n, i, m) option remember;
          `if`(n=0, x, expand(add(b(n-1, j, max(m, j))*
          `if`(j (p-> seq(coeff(p, x, i), i=1..n))(b(n, 1, 0)):
    seq(T(n), n=1..12);  # Alois P. Heinz, Mar 24 2016
  • Mathematica
    b[n_, i_, m_] := b[n, i, m] = If[n == 0, x, Expand[Sum[b[n - 1, j, Max[m, j]]*If[j < i, x, 1], {j, 1, m + 1}]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, 1, 0]];
    Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, May 24 2016, after Alois P. Heinz *)

Extensions

Corrected and extended by Franklin T. Adams-Watters, Jun 08 2006
Previous Showing 31-33 of 33 results.