cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A057363 a(n) = floor(8*n/13).

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12, 12, 13, 14, 14, 15, 16, 16, 17, 17, 18, 19, 19, 20, 20, 21, 22, 22, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 29, 30, 30, 31, 32, 32, 33, 33, 34, 35, 35, 36, 36, 37, 38, 38, 39, 40, 40, 41, 41, 42, 43, 43, 44, 44
Offset: 0

Views

Author

Keywords

Comments

The cyclic pattern (and numerator of the gf) is computed using Euclid's algorithm for GCD.

References

  • N. Dershowitz and E. M. Reingold, Calendrical Calculations, Cambridge University Press, 1997.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, NY, 1994.

Crossrefs

Note that 20 appears twice. Different from A005206, A060143.

Programs

  • Magma
    [Floor(8*n/13): n in [0..50]]' // G. C. Greubel, Nov 02 2017
  • Mathematica
    Table[Floor[8*n/13], {n, 0, 50}] (* G. C. Greubel, Nov 02 2017 *)
    LinearRecurrence[{1,0,0,0,0,0,0,0,0,0,0,0,1,-1},{0,0,1,1,2,3,3,4,4,5,6,6,7,8},80] (* Harvey P. Dale, Jul 21 2020 *)
  • PARI
    a(n)=8*n\13 \\ Charles R Greathouse IV, Sep 02 2015
    

Formula

a(n) = a(n-1) + a(n-13) - a(n-14).
G.f.: x^2*(1+x)*(x^2 - x + 1)*(x^8 + x^7 + x^2 + 1)/( (x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x-1)^2 ). [Numerator corrected Feb 20 2011]

A057364 a(n) = floor(8*n/21).

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 14, 14, 14, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 22, 22, 22, 23, 23, 24, 24, 24, 25, 25, 25, 26, 26, 27, 27, 27, 28, 28, 28, 29
Offset: 0

Views

Author

Keywords

Comments

The cyclic pattern (and numerator of the gf) is computed using Euclid's algorithm for GCD.

References

  • N. Dershowitz and E. M. Reingold, Calendrical Calculations, Cambridge University Press, 1997.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, NY, 1994.

Crossrefs

Programs

Formula

a(n) = a(n-1) + a(n-21) - a(n-22).
G.f.: x^3*(1+x)*(x^4 - x^3 + x^2 - x + 1)*(x^13 + x^11 + x^3 + 1) / ( (1 + x + x^2)*(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x^12 - x^11 + x^9 - x^8 + x^6 - x^4 + x^3 - x + 1)*(x-1)^2 ). [Numerator corrected by R. J. Mathar, Feb 20 2011]

A057365 a(n) = floor(13*n/21).

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12, 13, 13, 14, 14, 15, 16, 16, 17, 17, 18, 19, 19, 20, 21, 21, 22, 22, 23, 24, 24, 25, 26, 26, 27, 27, 28, 29, 29, 30, 30, 31, 32, 32, 33, 34, 34, 35, 35, 36, 37, 37, 38, 39, 39, 40, 40, 41, 42, 42, 43, 43, 44, 45
Offset: 0

Views

Author

Keywords

Comments

The cyclic pattern (and numerator of the gf) is computed using Euclid's algorithm for GCD.

References

  • N. Dershowitz and E. M. Reingold, Calendrical Calculations, Cambridge University Press, 1997.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, NY, 1994.

Crossrefs

Programs

Formula

a(n) = a(n-1) + a(n-21) - a(n-22).
G.f.: x^2*(1 + x^2 + x^3 + x^5 + x^7 + x^8 + x^10 + x^11 + x^13 + x^15 + x^16 + x^18 + x^19)/( (1+x+x^2)*(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x^12 - x^11 + x^9 - x^8 + x^6 - x^4 + x^3 - x + 1)*(x-1)^2 ). [Numerator corrected Feb 20 2011]

A057366 a(n) = floor(7*n/19).

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 17, 17, 18, 18, 18, 19, 19, 19, 20, 20, 21, 21, 21, 22, 22, 22, 23, 23, 23, 24, 24, 25, 25, 25, 26, 26, 26, 27, 27, 28, 28
Offset: 0

Views

Author

Keywords

Comments

The cyclic pattern (and numerator of the gf) is computed using Euclid's algorithm for GCD.

References

  • N. Dershowitz and E. M. Reingold, Calendrical Calculations, Cambridge University Press, 1997.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, NY, 1994.

Crossrefs

Similar pattern in Hebrew leap years A057349. Floors of other ratios: A004526, A002264, A002265, A004523, A057353, A057354, A057355, A057356, A057357, A057358, A057359, A057360, A057361, A057362, A057363, A057364, A057365, A057366, A057367.

Programs

Formula

a(n) = a(n-1) + a(n-19) - a(n-20).
G.f.: x^3*(x^2-x+1)*(x^14 + x^13 + x^12 - x^10 + x^8 + x^7 + x^6 + x + 1)/( (x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x-1)^2 ). [Corrected by R. J. Mathar, Feb 20 2011]

A351169 a(n) is the minimum number of vertices of degree 4 over all 4-collapsible graphs with n vertices.

Original entry on oeis.org

5, 4, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 22, 22, 22
Offset: 5

Views

Author

Allan Bickle, Feb 03 2022

Keywords

Comments

A graph G is k-collapsible if it has minimum degree k and has no proper induced subgraph with minimum degree k.

Examples

			A complete graph with 5 vertices is 4-collapsible with 5 degree 4 vertices.
The graph formed by removing two nonadjacent edges from a complete graph with 6 vertices is 4-collapsible with 4 degree 4 vertices.
		

Crossrefs

Programs

  • Mathematica
    A351169[n_]:=If[n<8,10-n,Ceiling[2n/7]];
    Array[A351169,100,5] (* Paolo Xausa, Nov 30 2023 *)
  • PARI
    a(n) = if(n<8,10-n,(2*n+6)\7); \\ Kevin Ryde, Mar 08 2022
  • Python
    print([5,4,3] + [1+(2*n-1)//7 for n in range(8, 80)]) # Gennady Eremin, Mar 07 2022
    

Formula

a(n) = ceiling(2*n/7) for n > 7.
G.f.: x^5*(5 - x - x^2 + x^6 - 5*x^7 + x^8 + x^9 + x^10)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)). - Stefano Spezia, Feb 05 2022
Previous Showing 11-15 of 15 results.