cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-33 of 33 results.

A217993 Smallest k such that k^(2^n) + 1 and (k+2)^(2^n) + 1 are both prime.

Original entry on oeis.org

2, 2, 2, 2, 74, 112, 2162, 63738, 13220, 54808, 3656570, 6992032, 125440, 103859114, 56414914, 87888966
Offset: 0

Views

Author

Michel Lagneau, Oct 17 2012

Keywords

Comments

a(15)=87888966 but a(14) is unknown. - Jeppe Stig Nielsen, Mar 17 2018
The prime pair related to a(14) was found four days ago, and today double checking has proved that they are indeed the first occurrence for n=14. - Jeppe Stig Nielsen, May 02 2018

Examples

			a(0) = 2 because 2^1+1 = 3 and 4^1+1 = 5 are prime;
a(1) = 2 because 2^2+1 = 5  and 4^2+1 = 17 are prime;
a(2) = 2 because 2^4+1 = 17  and 4^4+1 = 257 are prime;
a(3) = 2 because  2^8+1 = 257 and 4^8+1 = 65537 are prime.
		

Crossrefs

Programs

  • Maple
    for n from 0  to 5 do:ii:=0:for k from 2 by 2 to 10000 while(ii=0) do:if type(k^(2^n)+1,prime)=true and type((k+2)^(2^n)+1,prime)=true then ii:=1: printf ( "%d %d \n",n,k):else fi:od:od:

Formula

a(n) = A118539(n)-1. - Jeppe Stig Nielsen, Feb 27 2016

Extensions

a(13) from Jeppe Stig Nielsen, Mar 17 2018
a(14) and a(15) from Jeppe Stig Nielsen, May 02 2018

A272137 Primes of the form k^16 + 1.

Original entry on oeis.org

2, 65537, 197352587024076973231046657, 808551180810136214718004658177, 1238846438084943599707227160577, 37157429083410091685945089785857, 123025056645280288014028950372089857, 150838912030874130174020868290707457
Offset: 1

Views

Author

Jaroslav Krizek, May 08 2016

Keywords

Comments

Corresponding values of k are in A006313.

Crossrefs

Cf. Sequences of numbers n such that n^(2^k)+1 is a prime p for k = 1-13: A005574 (k=1), A000068 (k=2), A006314 (k=3), A006313 (k=4), A006315 (k=5), A006316 (k=6), A056994 (k=7), A056995 (k=8), A057465 (k=9), A057002 (k=10), A088361 (k=11), A088362 (k=12), A226528 (k=13).
Corresponding sequences of primes p of the form n^(2^k)+1 for k = 1-4: A002496 (k=1), A037896 (k=2), A258805 (k=3), A272137 (k=4).

Programs

  • Magma
    [n^16 + 1: n in [1..700] | IsPrime(n^16 + 1)];
  • Maple
    A272137:=n->`if`(isprime(n^16+1), n^16+1, NULL): seq(A272137(n), n=1..200); # Wesley Ivan Hurt, May 11 2016

A277967 Number of even numbers b with 0 < b < 2^n such that b^(2^n) + 1 is prime.

Original entry on oeis.org

0, 1, 2, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 2, 3, 4, 1
Offset: 1

Views

Author

Jeppe Stig Nielsen, Nov 06 2016

Keywords

Comments

The choice whether to take b < 2^n or b <= 2^n matters only for n=1 and n=2 unless there are more primes like 2^2+1 and 4^4+1 (see A121270).
Perfect squares b are allowed.
a(20) was determined after a lengthy computation by distributed project PrimeGrid, cf. A321323. - Jeppe Stig Nielsen, Jan 02 2019

Examples

			For n=18, we get b^262144 + 1 is prime for b=24518, 40734, 145310, 361658, 525094, ...; the first 3 of these b values are strictly below 262144, hence a(18)=3.
The corresponding primes are 2^4+1; 2^8+1, 4^8+1; 2^16+1; 30^32+1; 120^128+1; 46^512+1; etc.
		

Crossrefs

Programs

  • Mathematica
    Table[Count[Range[2, 2^n - 1, 2], b_ /; PrimeQ[b^(2^n) + 1]], {n, 9}] (* Michael De Vlieger, Nov 10 2016 *)
  • PARI
    a(n)=sum(k=1,2^(n-1)-1,ispseudoprime((2*k)^2^n+1)) \\ slow, only probabilistic primality test

Extensions

a(20) from Jeppe Stig Nielsen, Jan 02 2019
Previous Showing 31-33 of 33 results.