cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 101 results. Next

A375146 Numbers whose prime factorization has exactly one exponent that is larger than 3.

Original entry on oeis.org

16, 32, 48, 64, 80, 81, 96, 112, 128, 144, 160, 162, 176, 192, 208, 224, 240, 243, 256, 272, 288, 304, 320, 324, 336, 352, 368, 384, 400, 405, 416, 432, 448, 464, 480, 486, 496, 512, 528, 544, 560, 567, 576, 592, 608, 624, 625, 640, 648, 656, 672, 688, 704, 720
Offset: 1

Views

Author

Amiram Eldar, Aug 01 2024

Keywords

Comments

Subsequence of A046101 and first differs from it at n = 98: A046101(98) = 1296 = 2^4 * 3^4 is not a term of this sequence.
Numbers k such that the powerful part of k, A057521(k), is a prime power whose exponent is larger than 3 (A246550).
The asymptotic density of this sequence is (1/zeta(4)) * Sum_{p prime} 1/(p^4-1) = 0.075131780079404733755... .

Examples

			16 = 2^4 is a term since its prime factorization has exactly one exponent, 4, that is larger than 3.
		

Crossrefs

Subsequence of A046101.

Programs

  • Mathematica
    q[n_] := Count[FactorInteger[n][[;;, 2]], _?(# > 3 &)] == 1; Select[Range[1000], q]
  • PARI
    is(k) = #select(x -> x > 3, factor(k)[, 2]) == 1;

A380160 a(n) is the value of the Euler totient function when applied to the powerful part of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 6, 1, 1, 2, 1, 1, 1, 8, 1, 6, 1, 2, 1, 1, 1, 4, 20, 1, 18, 2, 1, 1, 1, 16, 1, 1, 1, 12, 1, 1, 1, 4, 1, 1, 1, 2, 6, 1, 1, 8, 42, 20, 1, 2, 1, 18, 1, 4, 1, 1, 1, 2, 1, 1, 6, 32, 1, 1, 1, 2, 1, 1, 1, 24, 1, 1, 20, 2, 1, 1, 1, 8, 54, 1, 1, 2
Offset: 1

Views

Author

Amiram Eldar, Jan 13 2025

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, 1, (p-1)*p^(e-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1, 1, (f[i, 1]-1)*f[i, 1]^(f[i, 2]-1)));}

Formula

a(n) = A000010(A057521(n)).
a(n) >= 1, with equality if and only if n is squarefree (A005117).
a(n) <= A000010(n), with equality if and only if n is powerful (A001694).
Multiplicative with a(p) = 1, and a(p^e) = (p-1)*p^(e-1) if e >= 2.
Dirichlet g.f.: zeta(s-1) * Product_{p prime} (1 + 1/p^s - 1/p^(s-1) + 1/p^(2*s-2) - 2/p^(2*s-1)).
Sum_{k=1..n} a(k) ~ c * n^(3/2) / 3, where c = Product_{p prime} (1 + 2/p^(3/2) - 1/p^2 - 2/p^(5/2)) = 1.96428740396979919886... .

A385007 The largest unitary divisor of n that is a biquadratefree number (A046100).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 3, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 1, 65, 66, 67, 68, 69
Offset: 1

Views

Author

Amiram Eldar, Jun 15 2025

Keywords

Comments

First differs from A053165 at n = 32 = 2^5: a(32) = 1 while A053165(32) = 2.
First differs from A383764 at n = 32 = 2^5: a(32) = 1 while A383764(32) = 32.
Equivalently, a(n) is the least divisor d of n such that n/d is a 4-full number (A036967).

Crossrefs

The largest unitary divisor of n that is: A000265 (odd), A006519 (power of 2), A055231 (squarefree), A057521 (powerful), A065330 (5-rough), A065331 (3-smooth), A350388 (square), A350389 (exponentially odd), A360539 (cubefree), A360540 (cubefull), A366126 (cube), A367168 (exponentially 2^n), this sequence (biquadratefree).

Programs

  • Mathematica
    f[p_, e_] := If[e < 4, p^e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] < 4, f[i, 1]^f[i, 2], 1)); }

Formula

a(n) = 1 if and only if n is a 4-full number (A036967).
a(n) = n if and only if n is a biquadratefree number (A046100).
Multiplicative with a(p^e) = p^e if e <= 3, and 1 otherwise.
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + p^(1-s) - p^(-s) + p^(2-2*s) - p^(1-2*s) - p^(2-3*s) + p^(3-3*s) - p^(3-4*s) + p^(-4*s)).
Sum_{k=1..n} a(k) ~ c * zeta(2) * n^2 / 2, where c = Product_{p prime} (1 - 1/p^2 - 1/p^4 + 1/p^6 + 1/p^8 - 1/p^9) = 0.56331392082909224894... .

A328015 Decimal expansion of the growth constant for the number of terms of A328014 (numbers whose powerful part is larger than their powerfree part).

Original entry on oeis.org

1, 1, 1, 5, 4, 3, 6, 6, 3, 1, 1, 1, 1, 0, 1, 3, 6, 9, 8, 9, 3, 1, 9, 3, 4, 3, 0, 2, 9, 4, 1, 0, 9, 6, 3, 2, 7, 0, 3, 3, 2, 8, 6, 6, 4, 9, 1, 1, 3, 0, 5, 3, 1, 6, 1, 6, 7, 1, 1, 4, 7, 6, 3, 9, 5, 7, 6, 8, 0, 3, 0, 7, 0, 3, 2, 1, 1, 7, 2, 4, 6, 8, 3, 7, 7, 2, 3
Offset: 1

Views

Author

Amiram Eldar, Oct 01 2019

Keywords

Comments

Cloutier et al. showed that the number of terms of A328014 below x is D0 * x^(3/4) + O(x^(2/3)*log(x)), where D0 is this constant.

Examples

			1.115436631111013698931934302941096327033286649113053...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 500; m = 500; f[x_] := (1 - x)*(1 + (1 - x)*x/(1 + x^(3/2))); c = LinearRecurrence[{2, -3, 2, 1, -3, 3, -1}, {0, 0, 0, -8, -5, 6, 14}, m]; RealDigits[(4/3)*(Zeta[3/2]/Zeta[3])*f[1/2]*f[1/3]*Exp[NSum[Indexed[c, n]*(PrimeZetaP[n/2] - 1/2^(n/2) - 1/3^(n/2))/n, {n, 3, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]

Formula

Equals (4/3)*(zeta(3/2)/zeta(3)) * Product_{p prime} (1 - 1/p)*(1 + (1-1/p)/(p*(1 + 1/p^(3/2)))).

A336224 Numbers k such that the largest square dividing k is a unitary divisor of k and its square root has an even number of prime divisors (counted with multiplicity).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 48, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 100
Offset: 1

Views

Author

Amiram Eldar, Jul 12 2020

Keywords

Comments

Terms k of A335275 such that A000188(k) is a term of A028260.
Numbers whose powerful part (A057521) is the square of a term of A028260.
The squarefree numbers (A005117) are terms of this sequence since if k is squarefree, then the largest square dividing k is 1 which is a unitary divisor, sqrt(1) has 0 prime divisors, and 0 is even.
The asymptotic density of this sequence is (5 * Product_{p prime} (1 - 1/(p^2*(p+1))) + 2 * Product_{p prime} (1 + 1/(p^2*(p+1))))/10 = (5 * 0.881513... + 2 * 1.125606...)/10 = 0.665878294481337275662425136416469977597382409701642... (Cohen, 1964; the first product is A065465).

Examples

			16 is a term since the largest square dividing 16 is 16, which is a unitary divisor, sqrt(16) = 4, 4 = 2 * 2 has 2 prime divisors, and 2 is even.
		

Crossrefs

Intersection of A335275 and A336222.

Programs

  • Mathematica
    seqQ[n_] := AllTrue[(e = FactorInteger[n][[;; , 2]]), # == 1 || EvenQ[#] &] && EvenQ @ Total[Select[e, # > 1 &]/2]; Select[Range[100], seqQ]

A349574 Lexicographically earliest infinite sequence such that a(i) = a(j) => A344696(i) = A344696(j) and A344697(i) = A344697(j), for all i, j >= 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 2, 1, 1, 1, 5, 1, 4, 1, 2, 1, 1, 1, 3, 6, 1, 7, 2, 1, 1, 1, 8, 1, 1, 1, 9, 1, 1, 1, 3, 1, 1, 1, 2, 4, 1, 1, 5, 10, 6, 1, 2, 1, 7, 1, 3, 1, 1, 1, 2, 1, 1, 4, 11, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 6, 2, 1, 1, 1, 5, 13, 1, 1, 2, 1, 1, 1, 3, 1, 4, 1, 2, 1, 1, 1, 8, 1, 10, 4, 14, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 22 2021

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A344696(n), A344697(n)].
For all i, j, A003557(i) = A003557(j) => a(i) = a(j); in other words, this sequence is a function of A003557. This follows because A344696(n) = A344696(A057521(n)), A344697(n) = A344696(A057521(n)), and A057521(n) = A064549(A003557(n)).
Apparently, A081770 gives the positions of 2's, which occur on those n where A344696(n) = 7 and A344697(n) = 6.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    Aux349574(n) = { my(s=sigma(n),u=A001615(n),g=gcd(u,s)); [s/g, u/g]; };
    v349574 = rgs_transform(vector(up_to, n, Aux349574(n)));
    A349574(n) = v349574[n];

Formula

For all n >= 1, a(n) = a(A057521(n)). [See comments]

A371601 Nonsquarefree numbers whose largest nonunitary prime divisor is smaller than their smallest unitary prime divisor, if it exists.

Original entry on oeis.org

4, 8, 9, 12, 16, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 48, 49, 52, 56, 60, 63, 64, 68, 72, 76, 80, 81, 84, 88, 92, 96, 99, 100, 104, 108, 112, 116, 117, 120, 121, 124, 125, 128, 132, 135, 136, 140, 144, 148, 152, 153, 156, 160, 164, 168, 169, 171, 172, 175, 176
Offset: 1

Views

Author

Amiram Eldar, Mar 29 2024

Keywords

Comments

Subsequence of A283050 and first differs from it at n = 100: A283050(100) = 300 = 2^2 * 3 * 5^2 is not a term of this sequence.
Powerful numbers and nonpowerful numbers k such that 1 < A249740(k) < A277698(k), or equivalently, 1 < A006530(A057521(k)) < A020639(A055231(k)).
The asymptotic density of this sequence is (6/Pi^2) * Sum_{p prime} f(p)/(p^2-p+1) = 0.32131800923..., where f(p) = Product_{primes q <= p} (q^2-q+1)/(q^2-1).

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, Max[e] > 1 && (Min[e] > 1 || Max[e[[FirstPosition[e, 1][[1]] ;; -1]]] == 1)]; Select[Range[200], q]
  • PARI
    is(n) = {my(e = apply(x->if(x > 1, 2, 1), factor(n)[,2])); n > 1 && vecmax(e) > 1 && vecsort(e, , 4) == e;}

A375342 The maximum exponent in the prime factorization of the numbers whose powerful part is a power of a squarefree number that is larger than 1.

Original entry on oeis.org

2, 3, 2, 2, 4, 2, 2, 3, 2, 3, 2, 5, 2, 3, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 6, 2, 2, 2, 4, 4, 2, 3, 2, 2, 5, 2, 2, 2, 3, 4, 2, 2, 3, 2, 2, 3, 2, 7, 2, 3, 3, 2, 2, 2, 2, 3, 2, 2, 5, 4, 2, 3, 2, 2, 2, 2, 4, 2, 3, 2, 3, 6, 2, 2, 2, 2, 4, 2, 3, 2, 5, 2, 2, 3, 2, 2, 4, 2, 5, 2, 2, 3, 3, 2, 8, 2, 2, 3, 2, 3, 4, 2, 2, 2, 3
Offset: 1

Views

Author

Amiram Eldar, Aug 12 2024

Keywords

Crossrefs

Programs

  • Mathematica
    s[n_] := Module[{e = Select[FactorInteger[n][[;; , 2]], # > 1 &]}, If[Length[e] > 0 && SameQ @@ e, e[[1]], Nothing]]; Array[s, 300]
  • PARI
    lista(kmax) = {my(e); for(k = 1, kmax, e = select(x -> x > 1, factor(k)[,2]); if(#e > 0 && vecmin(e) == vecmax(e), print1(e[1], ", ")));}

Formula

a(n) = A051903(A375142(n)).
a(n) = 2 if and only if A375142(n) is in A067259.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=2} k*d(k) / Sum_{k>=2} d(k) = 2.70113273169250927084..., where d(k) = (f(k)-1)/zeta(2) is the asymptotic density of terms m of A375142 with A051903(m) = k, f(k) = zeta(k) * Product_{p prime} (1 + Sum_{i=k+1..2*k-1} (-1)^i/p^i), if k is even, and f(k) = (zeta(2*k)/zeta(k)) * Product_{p prime} (1 + 2/p^k + Sum_{i=k+1..2*k-1} (-1)^(i+1)/p^i) if k is odd > 1.

A383795 Dirichlet g.f.: zeta(2*s-2) * zeta(s)^2.

Original entry on oeis.org

1, 2, 2, 7, 2, 4, 2, 12, 12, 4, 2, 14, 2, 4, 4, 33, 2, 24, 2, 14, 4, 4, 2, 24, 28, 4, 22, 14, 2, 8, 2, 54, 4, 4, 4, 84, 2, 4, 4, 24, 2, 8, 2, 14, 24, 4, 2, 66, 52, 56, 4, 14, 2, 44, 4, 24, 4, 4, 2, 28, 2, 4, 24, 139, 4, 8, 2, 14, 4, 8, 2, 144, 2, 4, 56, 14, 4, 8, 2, 66, 113
Offset: 1

Views

Author

Vaclav Kotesovec, May 10 2025

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], Sum[(e+1-2*k) * p^(2*k), {k, 0, (e-1)/2}], Sum[(e+1-2*k) * p^(2*k), {k, 0, e/2}]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 24 2025 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/((1-p^2*X^2)*(1-X)^2))[n], ", "))

Formula

Sum_{k=1..n} a(k) ~ zeta(3/2)^2 * n^(3/2)/3 - n*(log(n) + 2*log(2*Pi) + 2*gamma - 1)/2, where gamma is the Euler-Mascheroni constant A001620.
Multiplicative with a(p^e) = Sum_{k=0..(e-1)/2} (e+1-2*k) * p^(2*k) if e is odd, and Sum_{k=0..e/2} (e+1-2*k) * p^(2*k) if e is even. - Amiram Eldar, May 24 2025

A173518 Solutions z of the Diophantine equation x^3 + y^3 = 6z^3.

Original entry on oeis.org

21, 960540, 16418498901144294337512360, 436066841882071117095002459324085167366543342937477344818646196279385305441506861017701946929489111120
Offset: 1

Views

Author

Michel Lagneau, Feb 20 2010

Keywords

Comments

A. Nitaj proved Erdős's conjecture (1975) and claimed that there exist infinitely many triples of 3-powerful numbers a,b,c with (a,b) = 1, such that a+b=c, because the equation x^3 + y^3 = 6z^3 admits an infinite number of solutions, and given by the recurrence equations (see formula). It is proved that a=x(k)^3, b=y(k)^3, and c=6c^3, and are 3-powerful numbers for each k >= 1.

Examples

			37^3 + 17^3 = 6*21^3.
		

References

  • J. M. De Koninck, Ces nombres qui nous fascinent, Ellipses, 2008, p. 348.
  • Mordell, L. J. (1969). Diophantine equations. Academic Press. ISBN 0-12-506250-8

Crossrefs

Programs

  • Maple
    x0:=37:y0:=17:z0:=21: for p from 1 to 5 do: x1:=x0*(x0^3+ 2*y0^3):y1:=-y0*(2*x0^3+ y0^3):z1:=z0*(x0^3- y0^3): print(z1) : x0 :=x1 :y0 :=y1 :z0 :=z1 :od :

Formula

We generate the solutions (x(k),y(k),z(k)) from the initial solution x(0) = 37, y(0)=17, z(0)=21 x(k+1) = x(k)*(x(k)^3 + 2*y(k)^3) y(k+1) = -y(k)*(2*x(k)^3 + y(k)^3) z(k+1) = z(k)*(x(k)^3 - y(k)^3).
Previous Showing 91-100 of 101 results. Next