Original entry on oeis.org
1, 1, 1, 3, 2, 1, 3, 5, 3, 1, 5, 8, 8, 4, 1, 5, 13, 16, 12, 5, 1, 7, 18, 29, 28, 17, 6, 1, 7, 25, 47, 57, 45, 23, 7, 1, 9, 32, 72, 104, 102, 68, 30, 8, 1, 9, 41, 104, 176, 206, 170, 98, 38, 9, 1
Offset: 1
First few rows of the triangle:
1;
1, 1;
3, 2, 1;
3, 5, 3, 1;
5, 8, 8, 4, 1;
5, 13, 16, 12, 5, 1;
7, 18, 29, 28, 17, 6, 1;
...
A276418
Starting a random walk on Z at 0 triangle T(j,k) gives the number of paths of length 2*j returning to 0 exactly k times.
Original entry on oeis.org
1, 2, 2, 6, 6, 4, 20, 20, 16, 8, 70, 70, 60, 40, 16, 252, 252, 224, 168, 96, 32, 924, 924, 840, 672, 448, 224, 64, 3432, 3432, 3168, 2640, 1920, 1152, 512, 128, 12870, 12870, 12012, 10296, 7920, 5280, 2880, 1152, 256, 48620, 48620, 45760, 40040, 32032, 22880, 14080, 7040, 2560, 512, 184756, 184756, 175032, 155584, 128128, 96096, 64064, 36608, 16896, 5632, 1024
Offset: 0
Triangle T(j,k) begins:
1
2, 2
6, 6, 4
20, 20, 16, 8
70, 70, 60, 40, 16
252, 252, 224, 168, 96, 32
924, 924, 840, 672, 448, 224, 64
3432, 3432, 3168, 2640, 1920, 1152, 512, 128
12870, 12870, 12012, 10296, 7920, 5280, 2880, 1152, 256
48620, 48620, 45760, 40040, 32032, 22880, 14080, 7040, 2560, 512
-
Flat(List([0..10],j->List([0..j],k->2^k*Binomial(2*j-k,j-k)))); # Muniru A Asiru, May 18 2018
A287879
Irregular triangle read by rows: normalized dimensions of certain generalized quadratic residue codes of length n.
Original entry on oeis.org
2, 4, 2, 8, 6, 16, 16, 18, 32, 40, 50, 64, 96, 132, 146, 128, 224, 336, 406, 256, 512, 832, 1088, 1186, 512, 1152, 2016, 2832, 3330, 1024, 2560, 4800, 7200, 9060, 9762, 2048, 5632, 11264, 17952, 24024, 27654, 4096, 12288, 26112, 44032, 62352, 76176, 81330, 8192, 26624, 59904, 106496, 158912, 204984, 232050, 16384, 57344, 136192, 254464, 398720, 540736, 645540, 684210
Offset: 1
Triangle begins:
[2],
[4, 2],
[8, 6],
[16, 16, 18],
[32, 40, 50],
[64, 96, 132, 146],
[128, 224, 336, 406],
[256, 512, 832, 1088, 1186],
[512, 1152, 2016, 2832, 3330],
[1024, 2560, 4800, 7200, 9060, 9762],
[2048, 5632, 11264, 17952, 24024, 27654],
[4096, 12288, 26112, 44032, 62352, 76176, 81330],
[8192, 26624, 59904, 106496, 158912, 204984, 232050],
[16384, 57344, 136192, 254464, 398720, 540736, 645540, 684210],
...
-
g:=proc(m,w) local k;
if w=0 then 2^m else
2^m*add( (m/(m-w))*binomial(w-1,w-k)*binomial(m-w,k)/4^k, k=1..w);
fi;
end;
for n from 1 to 14 do
lprint( [seq(g(n,w),w=0..floor(n/2))]);
od;
A350512
Triangle read by rows with T(n,0) = 1 for n >= 0 and T(n,k) = binomial(n-1,k-1)*(2*k*(n-k) + n)/k for 0 < k <= n.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 7, 7, 1, 1, 10, 18, 10, 1, 1, 13, 34, 34, 13, 1, 1, 16, 55, 80, 55, 16, 1, 1, 19, 81, 155, 155, 81, 19, 1, 1, 22, 112, 266, 350, 266, 112, 22, 1, 1, 25, 148, 420, 686, 686, 420, 148, 25, 1, 1, 28, 189, 624, 1218, 1512, 1218, 624, 189, 28, 1
Offset: 0
Triangle T(n, k) for 0 <= k <= n starts:
n\k : 0 1 2 3 4 5 6 7 8 9
=================================================
0 : 1
1 : 1 1
2 : 1 4 1
3 : 1 7 7 1
4 : 1 10 18 10 1
5 : 1 13 34 34 13 1
6 : 1 16 55 80 55 16 1
7 : 1 19 81 155 155 81 19 1
8 : 1 22 112 266 350 266 112 22 1
9 : 1 25 148 420 686 686 420 148 25 1
etc.
-
Flatten[Table[Join[{1},Table[Binomial[n-1,k-1](2*k*(n-k) + n)/k,{k,n}]],{n,0,10}]] (* Stefano Spezia, Jan 06 2022 *)
A140876
Triangle T(n,k) = A053120(n+2,k)-2*A053120(n+1,k)+A053120(n,k) read by rows, 0<=k
Original entry on oeis.org
2, 0, 6, -2, 2, 16, 0, -10, 10, 40, 2, -2, -36, 36, 96, 0, 14, -14, -112, 112, 224, -2, 2, 64, -64, -320, 320, 512, 0, -18, 18, 240, -240, -864, 864, 1152, 2, -2, -100, 100, 800, -800, -2240, 2240, 2560, 0, 22, -22, -440, 440, 2464, -2464, -5632, 5632, 5632, -2, 2, 144, -144, -1680, 1680, 7168, -7168, -13824, 13824
Offset: 1
2;
0, 6;
-2, 2, 16;
0, -10, 10, 40;
2, -2, -36, 36, 96;
0, 14, -14, -112, 112, 224;
-2, 2, 64, -64, -320, 320, 512;
0, -18, 18, 240, -240, -864, 864, 1152;
2, -2, -100, 100, 800, -800, -2240, 2240, 2560;
0, 22, -22, -440, 440, 2464, -2464, -5632, 5632, 5632;
-2, 2, 144, -144, -1680, 1680, 7168, -7168, -13824, 13824, 12288;
-
Clear[T, D2, x, n, m] T[n_, m_] := CoefficientList[ChebyshevT[n + 1, x], x][[m + 1]]; D2[n_, m_] := T[n + 2, m] - 2*T[n + 1, m] + T[n, m]; a = Table[Flatten[Table[D2[n, m], {m, 0, n}]], {n, 0, 10}]; Flatten[a]
Comments