cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A117294 Number of sequences of length n starting with 1,2 which satisfy a recurrence a(k+1) = floor(c*a(k)) for some constant c.

Original entry on oeis.org

1, 2, 5, 14, 37, 102, 279, 756, 2070, 5609, 15198, 41530, 114049, 315447, 876513, 2446326, 6861432, 19315953, 54556553, 154591186, 439307113, 1251678183, 3574777087, 10231666185, 29343549576, 84309936418, 242651784699, 699476361863, 2019289119525, 5837355573611, 16896103820563, 48963682959055, 142051622347551
Offset: 2

Views

Author

Keywords

Comments

It appears that a(n+1)/a(n) may be converging slowly to 3, but even that it converges is not obvious.
From Martin Fuller, Apr 05 2025: (Start)
Each finite sequence corresponds to a range of c, e.g. (1,2,4,9) has c in [9/4,5/2).
Let x=(maximum element)*(range width of c), e.g. x(1,2,4,9)=9*(5/2 - 9/4)=9/4.
Then the number of extensions of this sequence in a(n+1) is either floor(x)+1 or ceil(x)+1. Non-rigorously, the expected number is x+1.
Also x is bounded 0
Does X have a distribution for large n and approximate c? Can this be used to work out the growth rate of a(n)? (End)

Examples

			a(4) = 5: length 4 sequences are 1,2,4,8; 1,2,4,9; 1,2,5,12; 1,2,5,13; and 1,2,5,14.
		

Crossrefs

Some (infinite) examples of such sequences: A000079, A007051, A076883, A001519, A024537, A024576, A057960.

Programs

  • Racket
    (define (A117294 n) (local ((define (get-ratios seq add?) (cond [(empty? (rest seq)) empty] [else (cons (/ (cond [add? (add1 (first seq))] [else (first seq)]) (second seq)) (get-ratios (rest seq) add?))])) (define (extend-one seq) (local ((define startnext (floor (* (apply max (get-ratios seq false)) (first seq)))) (define endnext (ceiling (* (apply min (get-ratios seq true )) (first seq)))) (define ltodo (build-list (- endnext startnext) (lambda (n) (cons (+ startnext n) seq))))) (cond [(>= (length seq) (sub1 n)) (length ltodo)] [else (apply + (map extend-one ltodo))])))) (extend-one (list 2 1)))) ;; Joshua Zucker, Jun 05 2006

Extensions

More terms from Joshua Zucker, Jun 05 2006
Comment edited by Franklin T. Adams-Watters, May 14 2010
Ambiguous terms a(0), a(1) removed by Max Alekseyev, Jan 18 2012
a(21)-a(24) from Jinyuan Wang, Mar 20 2025
a(25)-a(34) from Martin Fuller, Apr 05 2025

A208718 Number of n-bead necklaces labeled with numbers 1..5 allowing reversal, with no adjacent beads differing by more than 1.

Original entry on oeis.org

5, 9, 13, 24, 38, 78, 140, 306, 634, 1464, 3326, 8066, 19454, 48534, 121294, 308154, 785222, 2018548, 5203634, 13482426, 35019010, 91251438, 238278314, 623629333, 1635062126, 4294493670, 11296419934, 29757590061, 78489973742, 207281830814
Offset: 1

Author

R. H. Hardin, Mar 01 2012

Keywords

Examples

			All solutions for n=3:
..3....1....2....4....5....1....2....2....3....4....1....4....3
..3....1....2....5....5....1....3....2....4....4....2....4....3
..4....1....2....5....5....2....3....3....4....5....2....4....3
		

Crossrefs

Column 5 of A208721.

Formula

a(2n+1) = (1/2) * (A208774(2n+1) + r(n+1)) where r(n) = A057960(n+1). - Andrew Howroyd, Mar 03 2017
a(2n) = (1/2) * A208774(2n) + (1/4) * (r(n) + r(n+1)) where r(n) = A057960(n+1). - Andrew Howroyd, Mar 03 2017

Extensions

a(25)-a(30) from Andrew Howroyd, Mar 03 2017

A296449 Triangle I(m,n) read by rows: number of perfect lattice paths on the m*n board.

Original entry on oeis.org

1, 2, 4, 3, 7, 17, 4, 10, 26, 68, 5, 13, 35, 95, 259, 6, 16, 44, 122, 340, 950, 7, 19, 53, 149, 421, 1193, 3387, 8, 22, 62, 176, 502, 1436, 4116, 11814, 9, 25, 71, 203, 583, 1679, 4845, 14001, 40503, 10, 28, 80, 230, 664, 1922, 5574, 16188, 47064, 136946, 11, 31, 89, 257, 745, 2165, 6303, 18375, 53625, 156629, 457795
Offset: 1

Author

R. J. Mathar, Dec 13 2017

Keywords

Examples

			Triangle begins:
   1;
   2,  4;
   3,  7, 17;
   4, 10, 26,  68;
   5, 13, 35,  95, 259;
   6, 16, 44, 122, 340,  950;
   7, 19, 53, 149, 421, 1193, 3387;
   8, 22, 62, 176, 502, 1436, 4116, 11814;
   9, 25, 71, 203, 583, 1679, 4845, 14001, 40503;
  10, 28, 80, 230, 664, 1922, 5574, 16188, 47064, 136946;
		

Crossrefs

Cf. A081113 (diagonal), A000079 (2nd row), A001333 (3rd row), A126358, A057960, A126360, A002714, A126362, A188866.

Programs

  • Maple
    Inm := proc(n,m)
        if m >= n then
            (n+2)*3^(n-2)+(m-n)*add(A005773(i)*A005773(n-i),i=0..n-1)
                +2*add((n-k-2)*3^(n-k-3)*A001006(k),k=0..n-3) ;
        else
            0 ;
        end if;
    end proc:
    for m from 1 to 13 do
    for n from 1 to m do
        printf("%a,",Inm(n,m)) ;
    end do:
    printf("\n") ;
    end do:
    # Second program:
    A296449row := proc(n) local gf, ser;
    gf := n -> 1 + (x*(n - (3*n + 2)*x) + (2*x^2)*(1 +
    ChebyshevU(n - 1, (1 - x)/(2*x))) / ChebyshevU(n, (1 - x)/(2*x)))/(1 - 3*x)^2;
    ser := n -> series(expand(gf(n)), x, n + 1);
    seq(coeff(ser(n), x, k), k = 1..n) end:
    for n from 0 to 11 do A296449row(n) od; # Peter Luschny, Sep 07 2021
  • Mathematica
    (* b = A005773 *) b[0] = 1; b[n_] := Sum[k/n*Sum[Binomial[n, j] * Binomial[j, 2*j - n - k], {j, 0, n}], {k, 1, n}];
    (* c = A001006 *) c[0] = 1; c[n_] := c[n] = c[n-1] + Sum[c[k] * c[n-2-k], {k, 0, n-2}];
    Inm[n_, m_] := If[m >= n, (n + 2)*3^(n - 2) + (m - n)*Sum[b[i]*b[n - i], {i, 0, n - 1}] + 2*Sum[(n - k - 2)*3^(n - k - 3)*c[k], {k, 0, n-3}], 0];
    Table[Inm[n, m], {m, 1, 13}, {n, 1, m}] // Flatten (* Jean-François Alcover, Jan 23 2018, adapted from first Maple program. *)

Formula

I(m,n) = (n+2)*3^(n-2) + (m-n)*Sum_{i=0..n-1} A005773(i)*A005773(n-i) + 2*Sum_{k=0..n-3} (n-k-2)*3^(n-k-3)*A001006(k). [Yaqubi Corr. 2.10]
I(m,n) = A188866(m-1,n) for m > 1. - Pontus von Brömssen, Sep 06 2021
Previous Showing 11-13 of 13 results.