A117294 Number of sequences of length n starting with 1,2 which satisfy a recurrence a(k+1) = floor(c*a(k)) for some constant c.
1, 2, 5, 14, 37, 102, 279, 756, 2070, 5609, 15198, 41530, 114049, 315447, 876513, 2446326, 6861432, 19315953, 54556553, 154591186, 439307113, 1251678183, 3574777087, 10231666185, 29343549576, 84309936418, 242651784699, 699476361863, 2019289119525, 5837355573611, 16896103820563, 48963682959055, 142051622347551
Offset: 2
Keywords
A208718 Number of n-bead necklaces labeled with numbers 1..5 allowing reversal, with no adjacent beads differing by more than 1.
5, 9, 13, 24, 38, 78, 140, 306, 634, 1464, 3326, 8066, 19454, 48534, 121294, 308154, 785222, 2018548, 5203634, 13482426, 35019010, 91251438, 238278314, 623629333, 1635062126, 4294493670, 11296419934, 29757590061, 78489973742, 207281830814
Offset: 1
Keywords
Examples
All solutions for n=3: ..3....1....2....4....5....1....2....2....3....4....1....4....3 ..3....1....2....5....5....1....3....2....4....4....2....4....3 ..4....1....2....5....5....2....3....3....4....5....2....4....3
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..100
Formula
a(2n) = (1/2) * A208774(2n) + (1/4) * (r(n) + r(n+1)) where r(n) = A057960(n+1). - Andrew Howroyd, Mar 03 2017
Extensions
a(25)-a(30) from Andrew Howroyd, Mar 03 2017
A296449 Triangle I(m,n) read by rows: number of perfect lattice paths on the m*n board.
1, 2, 4, 3, 7, 17, 4, 10, 26, 68, 5, 13, 35, 95, 259, 6, 16, 44, 122, 340, 950, 7, 19, 53, 149, 421, 1193, 3387, 8, 22, 62, 176, 502, 1436, 4116, 11814, 9, 25, 71, 203, 583, 1679, 4845, 14001, 40503, 10, 28, 80, 230, 664, 1922, 5574, 16188, 47064, 136946, 11, 31, 89, 257, 745, 2165, 6303, 18375, 53625, 156629, 457795
Offset: 1
Examples
Triangle begins: 1; 2, 4; 3, 7, 17; 4, 10, 26, 68; 5, 13, 35, 95, 259; 6, 16, 44, 122, 340, 950; 7, 19, 53, 149, 421, 1193, 3387; 8, 22, 62, 176, 502, 1436, 4116, 11814; 9, 25, 71, 203, 583, 1679, 4845, 14001, 40503; 10, 28, 80, 230, 664, 1922, 5574, 16188, 47064, 136946;
Links
- D. Yaqubi, M. Farrokhi D. G., and H. Ghasemian Zoeram, Lattice paths inside a table, I, arXiv:1612.08697 [math.CO], 2016-2017, array I(m,n).
Crossrefs
Programs
-
Maple
Inm := proc(n,m) if m >= n then (n+2)*3^(n-2)+(m-n)*add(A005773(i)*A005773(n-i),i=0..n-1) +2*add((n-k-2)*3^(n-k-3)*A001006(k),k=0..n-3) ; else 0 ; end if; end proc: for m from 1 to 13 do for n from 1 to m do printf("%a,",Inm(n,m)) ; end do: printf("\n") ; end do: # Second program: A296449row := proc(n) local gf, ser; gf := n -> 1 + (x*(n - (3*n + 2)*x) + (2*x^2)*(1 + ChebyshevU(n - 1, (1 - x)/(2*x))) / ChebyshevU(n, (1 - x)/(2*x)))/(1 - 3*x)^2; ser := n -> series(expand(gf(n)), x, n + 1); seq(coeff(ser(n), x, k), k = 1..n) end: for n from 0 to 11 do A296449row(n) od; # Peter Luschny, Sep 07 2021
-
Mathematica
(* b = A005773 *) b[0] = 1; b[n_] := Sum[k/n*Sum[Binomial[n, j] * Binomial[j, 2*j - n - k], {j, 0, n}], {k, 1, n}]; (* c = A001006 *) c[0] = 1; c[n_] := c[n] = c[n-1] + Sum[c[k] * c[n-2-k], {k, 0, n-2}]; Inm[n_, m_] := If[m >= n, (n + 2)*3^(n - 2) + (m - n)*Sum[b[i]*b[n - i], {i, 0, n - 1}] + 2*Sum[(n - k - 2)*3^(n - k - 3)*c[k], {k, 0, n-3}], 0]; Table[Inm[n, m], {m, 1, 13}, {n, 1, m}] // Flatten (* Jean-François Alcover, Jan 23 2018, adapted from first Maple program. *)
Formula
I(m,n) = (n+2)*3^(n-2) + (m-n)*Sum_{i=0..n-1} A005773(i)*A005773(n-i) + 2*Sum_{k=0..n-3} (n-k-2)*3^(n-k-3)*A001006(k). [Yaqubi Corr. 2.10]
I(m,n) = A188866(m-1,n) for m > 1. - Pontus von Brömssen, Sep 06 2021
Comments
Examples
Links
Crossrefs
Programs
Racket
Extensions