cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A277341 a(n) is the nearest integer to prime(n)^prime(n+1)/prime(n+1)^prime(n).

Original entry on oeis.org

1, 2, 5, 101, 19, 873, 44, 3455, 716066, 122, 3682385, 42002, 239, 74612, 38038256, 75356321, 487, 168475200, 414001, 701, 473945370, 786827, 996734911, 1854156102515, 1757001, 1408, 2223586, 1578, 2777435, 102598699146418244788937, 5067957, 14314401926, 2577, 172311367283303079, 3045
Offset: 1

Views

Author

Ahmad J. Masad, Oct 09 2016

Keywords

Comments

Conjecture 1: For each positive integer m, there exists a minimum sufficiently large positive integer r that depends on m, such that taking any two distinct positive integers r1, r2 >= r, we have abs(a(r1) - a(r2)) >= m. For the special case of m=1 it is conjectured that r=1, which would imply (if the conjecture were true) that all terms of this sequence are distinct. - Ahmad J. Masad, Jun 28 2018
A complementary conjecture to Conjecture 1: For each nonnegative integer q, there are infinitely many possible positive integers k, t, w, s such that k < t <= w < s and (t-k) > (s-w) and abs((the nearest integer to (k^t/t^k)) - (the nearest integer to (w^s/s^w))) = q. These two conjectures together describe partially the significance of the set of primes among the set of natural numbers. - Ahmad J. Masad, Mar 29 2018
Conjecture 3: The Riemann hypothesis is true if and only if all terms of this sequence are distinct. This conjecture idea comes from the visual representation of the logarithmic scatterplot of the first 10000 terms of this sequence. - Ahmad J. Masad, Jan 09 2019
Conjecture 4: For each value of n, a(n+1) > a(n) if and only if A058077(n+1) > A058077(n), checked for n <= 10000. Note that the logarithmic scatterplot of A058077 seems to be similar to the logarithmic scatterplot of this sequence. - Ahmad J. Masad, Jun 28 2019
Notification: the conjecture that says that all terms of this sequence are distinct has been checked for the first 10000 terms; that is, the first 10000 terms of this sequence are distinct. - Ahmad J. Masad, Aug 25 2019
Conjecture 5: For each value of n > 1, if a(n) has the same number of digits as a(n+1) and a(n+1) > a(n), then prime(n+2) - prime(n+1) = prime(n+1) - prime(n). This conjecture has been verified for all n < 10000. - Ahmad J. Masad, Oct 08 2019

Examples

			For n = 4, we have ((prime(4)^prime(5))/(prime(5)^prime(4))) = (7^11)/(11^7) = 1977326743/19487171 = 101.4681271..., and 101 is the nearest integer to 101.4681271..., so a(4) = 101.
		

Crossrefs

Programs

  • Magma
    [Round((NthPrime(n)^NthPrime(n+1))/(NthPrime(n+1)^NthPrime(n))): n in [1..40]]; // Vincenzo Librandi Oct 18 2016
    
  • Mathematica
    Table[Round[((Prime[n]^Prime[n + 1])/(Prime[n + 1]^Prime[n]))], {n, 35}] (* Michael De Vlieger, Oct 14 2016 *)
    Round[(#[[1]]^#[[2]])/#[[2]]^#[[1]]]&/@Partition[Prime[Range[40]],2,1] (* Harvey P. Dale, Jun 29 2022 *)
  • PARI
    a(n) = round(prime(n)^prime(n+1)/prime(n+1)^prime(n)); \\ Michel Marcus, Jan 13 2018

A261523 a(n) = prime(n+1)! / (prime(n+1) - prime(n))!.

Original entry on oeis.org

6, 60, 2520, 1663200, 3113510400, 14820309504000, 60822550204416000, 1077167364120207360000, 12280224991305141603532800000, 4111419327088961408862781440000000, 19116323737814368119883304974417920000000, 1393855275548491962840419252226697986048000000000, 30207631531686917818677566034256998753632256000000000
Offset: 1

Views

Author

Altug Alkan, Aug 23 2015

Keywords

Comments

The author comments that this sequence is related to the product A058077(n) * A039716(n). - Charles R Greathouse IV, Aug 29 2015

Crossrefs

Programs

  • Magma
    [Factorial(NthPrime(n+1)) / Factorial((NthPrime(n+1) - NthPrime(n))): n in [1..15]]; // Vincenzo Librandi, Aug 23 2015
  • Maple
    A261523:=n->ithprime(n+1)!/(ithprime(n+1)-ithprime(n))!: seq(A261523(n), n=1..15); # Wesley Ivan Hurt, Aug 23 2015
  • Mathematica
    Table[Prime[i + 1]!/(Prime[i + 1] - Prime[i])!, {i, 15}] (* Vincenzo Librandi, Aug 23 2015 *)
  • PARI
    vector( 15,  n,  prime(n+1)! / (prime(n+1) - prime(n))! )
    
  • PARI
    vector( 15,  n,  binomial(prime(n+1), prime(n)) * prime(n)! )
    

Formula

a(n) = prime(n+1)! / (prime(n+1) - prime(n))! = A058077(n) * A039716(n).

A250092 a(n) = binomial( prime(n+4), prime(n) ).

Original entry on oeis.org

55, 286, 6188, 50388, 1352078, 67863915, 265182525, 17672631900, 202112640600, 78378960360, 1503232609098, 14844575908435, 647520696018735, 1312251244423350, 57963796707857040, 31074067324187580, 369731787035040, 275291011073898820, 51705423561053205
Offset: 1

Views

Author

Vincenzo Librandi, Nov 12 2014

Keywords

Crossrefs

Cf. similar sequences of the type binomial(prime(n+k),prime(n)): A058077 (k=1), A125550 (k=2), A126993 (k=3), this sequence (k=4), A126994 (k=5).

Programs

  • Magma
    [Binomial(NthPrime(n+4),NthPrime(n)): n in [1..20]];
  • Mathematica
    Table[Binomial[Prime[x + 4], Prime[x]], {x, 1, 20}]

A334575 a(n) = binomial(C(n+1),C(n)) where C(n) = A000108(n) the n-th Catalan number.

Original entry on oeis.org

1, 2, 10, 2002, 52860229080, 53570336911983273963270306331114400
Offset: 0

Views

Author

Henry Cryns, May 06 2020

Keywords

Crossrefs

Previous Showing 11-14 of 14 results.