A029829
Eisenstein series E_16(q) (alternate convention E_8(q)), multiplied by 3617.
Original entry on oeis.org
3617, 16320, 534790080, 234174178560, 17524001357760, 498046875016320, 7673653657232640, 77480203842286080, 574226476491096000, 3360143509958850240, 16320498047409790080, 68172690124863440640
Offset: 0
- N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984, see p. 111.
- J.-P. Serre, Course in Arithmetic, Chap. VII, Section 4.
-
E := proc(k) local n,t1; t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n,n=1..60); series(t1,q,60); end; E(16);
-
terms = 12;
E16[x_] = 3617 + 16320*Sum[k^15*x^k/(1 - x^k), {k, 1, terms}];
E16[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
-
a(n)=if(n<1,3617*(n==0),16320*sigma(n,15))
A029831
Eisenstein series E_24(q) (alternate convention E_12(q)), multiplied by 236364091.
Original entry on oeis.org
236364091, 131040, 1099243323360, 12336522153621120, 9221121336284413920, 1562118530273437631040, 103486260766565509822080, 3586400651444203277717760, 77352372210526124884754400, 1161399411211600265764157280
Offset: 0
- J.-P. Serre, Course in Arithmetic, Chap. VII, Section 4.
Cf.
A006352 (E_2),
A004009 (E_4),
A013973 (E_6),
A008410 (E_8),
A013974 (E_10),
A029828 (691*E_12),
A058550 (E_14),
A029829 (3617*E_16),
A279892 (43867*E_18),
A029830 (174611*E_20),
A279893 (77683*E_22), this sequence (236364091*E_24).
-
terms = 10;
E24[x_] = 236364091 + 131040*Sum[k^23*x^k/(1 - x^k), {k, 1, terms}];
E24[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
-
a(n)=if(n<1,236364091*(n==0),131040*sigma(n,23))
A029830
Eisenstein series E_20(q) (alternate convention E_10(q)), multiplied by 174611.
Original entry on oeis.org
174611, 13200, 6920614800, 15341851377600, 3628395292275600, 251770019531263200, 8043563916910526400, 150465416446925500800, 1902324110996589786000, 17831242688625346952400, 132000251770026451864800, 807299993919072011054400, 4217144038884527916580800, 19297347832955888660949600
Offset: 0
- J.-P. Serre, Course in Arithmetic, Chap. VII, Section 4.
Cf.
A006352 (E_2),
A004009 (E_4),
A013973 (E_6),
A008410 (E_8),
A013974 (E_10),
A029828 (691*E_12),
A058550 (E_14),
A029829 (3617*E_16),
A279892 (43867*E_18), this sequence (174611*E_20),
A279893 (77683*E_22),
A029831 (236364091*E_24).
-
terms = 14;
E20[x_] = 174611 + 13200*Sum[k^19*x^k/(1 - x^k), {k, 1, terms}];
E20[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
-
a(n)=if(n<1,174611*(n==0),13200*sigma(n,19))
A282287
Coefficients in q-expansion of E_4*E_6^2, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.
Original entry on oeis.org
1, -768, -19008, 67329024, 4834170816, 137655866880, 2122110676224, 21418943158272, 158760815970240, 928988742914304, 4512155542392960, 18847838706545664, 69519052583699712, 230952254655327744, 701948326302761472, 1975789128222443520
Offset: 0
-
terms = 16;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
E4[x]*E6[x]^2 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
A288989
Denominators of coefficients in expansion of E_14/E_12.
Original entry on oeis.org
1, 691, 477481, 329939371, 227988105361, 157539780804451, 108859988535875641, 75222252078290067931, 51978576186098436940321, 35917196144594019925761811, 24818782535914467768701411401, 17149778732316897228172675278091
Offset: 0
E_14/E_12 = 1 - 82104/691 * q - 181275671592/477481 * q^2 + 1327007921039904/329939371 * q^3 + 16726528971891002133912/227988105361 * q^4 + ... .
-
terms = 12;
E14[x_] = 1 - 24*Sum[k^13*x^k/(1 - x^k), {k, 1, terms}];
E12[x_] = 1 + (65520/691)*Sum[k^11*x^k/(1 - x^k), {k, 1, terms}];
E14[x]/E12[x] + O[x]^terms // CoefficientList[#, x]& // Denominator (* Jean-François Alcover, Feb 26 2018 *)
A279892
Eisenstein series E_18(q) (alternate convention E_9(q)), multiplied by 43867.
Original entry on oeis.org
43867, -28728, -3765465144, -3709938631392, -493547047383096, -21917724609403728, -486272786232443616, -6683009405824511424, -64690198594597187640, -479102079577959825624, -2872821917728374840144, -14520482234727711482016, -63736746640768788267744
Offset: 0
- J.-P. Serre, Course in Arithmetic, Chap. VII, Section 4.
Cf.
A006352 (E_2),
A004009 (E_4),
A013973 (E_6),
A008410 (E_8),
A013974 (E_10),
A029828 (691*E_12),
A058550 (E_14),
A029829 (3617*E_16), this sequence (43867*E_18),
A029830 (174611*E_20),
A279893 (77683*E_22),
A029831 (236364091*E_24).
-
terms = 13;
E18[x_] = 43867 - 28728*Sum[k^17*x^k/(1 - x^k), {k, 1, terms}];
E18[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
A279893
Eisenstein series E_22(q) (alternate convention E_11(q)), multiplied by 77683.
Original entry on oeis.org
77683, -552, -1157628456, -5774114968608, -2427722831757864, -263214111328125552, -12109202528761173024, -308317316973972772416, -5091303792066668003880, -60399282006368937251976, -552000263214112485753456, -4084937969230504375869024, -25394838301602325644596256, -136379620048544616772836528, -646588586243917921590531648
Offset: 0
- J.-P. Serre, Course in Arithmetic, Chap. VII, Section 4.
Cf.
A006352 (E_2),
A004009 (E_4),
A013973 (E_6),
A008410 (E_8),
A013974 (E_10),
A029828 (691*E_12),
A058550 (E_14),
A029829 (3617*E_16),
A279892 (43867*E_18),
A029830 (174611*E_20), this sequence (77683*E_22),
A029831 (236364091*E_24).
-
terms = 15;
E22[x_] = 77683 - 552*Sum[k^21*x^k/(1 - x^k), {k, 1, terms}];
E22[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
A386785
a(n) = n^4*sigma_5(n).
Original entry on oeis.org
0, 1, 528, 19764, 270592, 1953750, 10435392, 40356008, 138547200, 389021373, 1031580000, 2357962332, 5347980288, 10604527934, 21307972224, 38613915000, 70936231936, 118587960018, 205403284944, 322687828100, 528669120000, 797596142112, 1245004111296, 1801152941304, 2738246860800
Offset: 0
-
[0] cat [n^4*DivisorSigma(5, n): n in [1..35]]; // Vincenzo Librandi, Aug 04 2025
-
Table[n^4*DivisorSigma[5, n], {n, 0, 30}]
(* or *)
nmax = 30; CoefficientList[Series[Sum[k^4*x^k*(1 + 502*x^k + 14608*x^(2*k) + 88234*x^(3*k) + 156190*x^(4*k) + 88234*x^(5*k) + 14608*x^(6*k) + 502*x^(7*k) + x^(8*k))/(1 - x^k)^10, {k, 1, nmax}], {x, 0, nmax}], x]
(* or *)
terms = 30; E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}]; E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}]; CoefficientList[Series[(4*E2[x]^3*E4[x]^2 + 2*E2[x]*E4[x]^3 - E2[x]^4*E6[x] - 6*E2[x]^2*E4[x]*E6[x] - E4[x]^2*E6[x] + 2*E2[x]*E6[x]^2)/3456, {x, 0, terms}], x]
A282000
Coefficients in q-expansion of E_4^3*E_6, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.
Original entry on oeis.org
1, 216, -200232, -85500576, -11218984488, -499862636784, -11084671590048, -152346382155072, -1474691273530920, -10921720940625672, -65489246355989232, -331011680696545248, -1452954445366288032, -5665058572086302256, -19968589327695656256
Offset: 0
- G. E. Andrews and B. C. Berndt, Ramanujan's lost notebook, Part III, Springer, New York, 2012, See p. 208.
-
terms = 15;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
E4[x]^3*E6[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
A287964
Coefficients in expansion of 1/E_14.
Original entry on oeis.org
1, 24, 197208, 47715936, 42451725912, 18015200386704, 10924205579505504, 5511557851517150400, 3039496830486964153944, 1604976096786795234999096, 865212805864755380070382608, 461861254217266216545148291872
Offset: 0
-
terms = 12; Ei[n_] = 1-(2n/BernoulliB[n]) Sum[k^(n-1) x^k/(1-x^k), {k, terms}]; CoefficientList[1/Ei[14] + O[x]^terms, x] (* Jean-François Alcover, Mar 01 2018 *)