A338152
a(n) is the number of acyclic orientations of the edges of an n-dimensional demihypercube.
Original entry on oeis.org
1, 2, 24, 24024, 193270310, 767795414400
Offset: 1
-
Table[Abs[ChromaticPolynomial[GraphData[{"HalvedCube",n}]][-1]],{n,1,6}]
A308394
Numbers which can be written in the form m^k - m with m prime and k a positive integer.
Original entry on oeis.org
0, 2, 6, 14, 20, 24, 30, 42, 62, 78, 110, 120, 126, 156, 240, 254, 272, 336, 342, 506, 510, 620, 726, 812, 930, 1022, 1320, 1332, 1640, 1806, 2046, 2162, 2184, 2394, 2756, 3120, 3422, 3660, 4094, 4422, 4896, 4970, 5256, 6162, 6558, 6806, 6840, 7832, 8190, 9312
Offset: 1
a(9) = 2^6 - 2 = 62.
For the two terms known to have two representations we have a(3) = 6 = 2^3 - 2 = 3^2 - 3 and a(33)= 2184 = 3^7 - 3 = 13^3 - 13.
-
N:= 10^6; # to get all terms <= N
P:= select(isprime,[2,seq(i,i=3..floor((1+sqrt(1+4*N))/2),2)]):
S:= {0,seq(seq(m^k-m,k=2..floor(log[m](N+m))),m=P)}:
sort(convert(S,list)); # Robert Israel, Aug 11 2019
-
x=List([]); lim=10000; forprime(m=2, lim, for(k=1, 100, y=(m^k-m); if(y>lim, break, i=setsearch(x, y, 1); if(i>0, listinsert(x, y, i))))); for(i=1, #x, print(x[i]));
-
isok(n) = {forprime(p=2, oo, my(keepk = 0); for (k=1, oo, if ((x=p^k - p) == n, return(1)); if (x > n, keepk = k; break);); if (keepk == 2, break););} \\ Michel Marcus, Aug 06 2019
A353047
Number of length n words on alphabet {0,1,2} that contain each of the subwords 01, 02, 10, 12, 20, and 21 as (not necessarily contiguous) subwords.
Original entry on oeis.org
12, 108, 600, 2664, 10404, 37476, 127920, 420768, 1348476, 4242204, 13169160, 40490712, 123635028, 375623892, 1137095520, 3433306896, 10347106860, 31141984140, 93639862200, 281372571720, 845074016772, 2537235316548, 7615933808400, 22856659795584, 68588501433564
Offset: 5
a(5) = 12 because we have: {0, 1, 2, 0, 1}, {0, 1, 2, 1, 0}, {0, 2, 1, 0, 2}, {0, 2, 1, 2, 0}, {1, 0, 2, 0, 1}, {1, 0, 2, 1, 0}, {1, 2, 0, 1, 2}, {1, 2, 0, 2, 1}, {2, 0, 1, 0, 2}, {2, 0, 1, 2, 0}, {2, 1, 0, 1, 2}, {2, 1, 0, 2, 1}.
-
nn = 15; vertices = Level[Outer[ List, {a, b, c}, {d, e, f}, {h, i, j}, {k, l, m}, {n, o, p}, {q, r, s}], {6}]; x = {a -> b, d -> e, i -> j, o -> p}; y = {b -> c, h -> i, k -> l, r -> s}; z = {e -> f, l -> m, n -> o, q -> r}; replacementlist = Table[vertices[[kk]] -> kk, {kk, 1, 729}]; G= Normal[SparseArray[Flatten[Table[Normal[Merge[ Map[{mm, vertices[[mm]] /. # /. replacementlist} -> 1 &, {x, y, z}], Total]], {mm, 1, 729}]]]]; Iwg =
Inverse[IdentityMatrix[729] - w G]; CoefficientList[ Series[Iwg[[1, 729]], {w, 0, nn}], w]
A059517
The sequence A059515(3,n). Number of ways of placing n identifiable nonnegative intervals with a total of exactly three starting and/or finishing points.
Original entry on oeis.org
0, 0, 12, 138, 1056, 7050, 44472, 273378, 1659936, 10018650, 60289032, 362265618, 2175188016, 13055911050, 78349815192, 470141937858, 2820980767296, 16926272024250, 101558794406952, 609356253226098, 3656147979709776, 21936919259318250, 131621609699088312
Offset: 0
a(2)=12 since if aA indicates a zero length interval and a-A one of positive length the possibilities are: aA-b-B, b-aA-B, b-B-aA, bB-a-A, a-bB-A, a-A-bB, ab-A-B, ab-B-A, a-b-AB, b-a-AB, a-bA-B, b-a-AB.
Comments