cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A338152 a(n) is the number of acyclic orientations of the edges of an n-dimensional demihypercube.

Original entry on oeis.org

1, 2, 24, 24024, 193270310, 767795414400
Offset: 1

Views

Author

Peter Kagey, Oct 13 2020

Keywords

Crossrefs

Cf. A033815 (cross-polytope), A058809 (wheel), A334247 (hypercube), A338153 (prism), A338154 (antiprism).

Programs

  • Mathematica
    Table[Abs[ChromaticPolynomial[GraphData[{"HalvedCube",n}]][-1]],{n,1,6}]

Formula

a(n) = |Sum_{k=0..2^(n-1)} (-1)^k * A334280(n, k)|.

A308394 Numbers which can be written in the form m^k - m with m prime and k a positive integer.

Original entry on oeis.org

0, 2, 6, 14, 20, 24, 30, 42, 62, 78, 110, 120, 126, 156, 240, 254, 272, 336, 342, 506, 510, 620, 726, 812, 930, 1022, 1320, 1332, 1640, 1806, 2046, 2162, 2184, 2394, 2756, 3120, 3422, 3660, 4094, 4422, 4896, 4970, 5256, 6162, 6558, 6806, 6840, 7832, 8190, 9312
Offset: 1

Views

Author

Craig J. Beisel, May 24 2019

Keywords

Comments

The only known terms which have two representations where m is prime are 6 and 2184. It is conjectured by Bennett these are the only terms with this property.

Examples

			a(9) = 2^6 - 2 = 62.
For the two terms known to have two representations we have a(3) = 6 = 2^3 - 2 = 3^2 - 3 and a(33)= 2184 = 3^7 - 3 = 13^3 - 13.
		

Crossrefs

Subsequences: A000918 (2^n - 2), A036689 (p^2 - p), A058809 (3^n - 3), A178671 (5^n - 5).

Programs

  • Maple
    N:= 10^6; # to get all terms <= N
    P:= select(isprime,[2,seq(i,i=3..floor((1+sqrt(1+4*N))/2),2)]):
    S:= {0,seq(seq(m^k-m,k=2..floor(log[m](N+m))),m=P)}:
    sort(convert(S,list)); # Robert Israel, Aug 11 2019
  • PARI
    x=List([]); lim=10000; forprime(m=2, lim, for(k=1, 100, y=(m^k-m); if(y>lim, break, i=setsearch(x, y, 1); if(i>0, listinsert(x, y, i))))); for(i=1, #x, print(x[i]));
    
  • PARI
    isok(n) = {forprime(p=2, oo, my(keepk = 0); for (k=1, oo, if ((x=p^k - p) == n, return(1)); if (x > n, keepk = k; break);); if (keepk == 2, break););} \\ Michel Marcus, Aug 06 2019

A353047 Number of length n words on alphabet {0,1,2} that contain each of the subwords 01, 02, 10, 12, 20, and 21 as (not necessarily contiguous) subwords.

Original entry on oeis.org

12, 108, 600, 2664, 10404, 37476, 127920, 420768, 1348476, 4242204, 13169160, 40490712, 123635028, 375623892, 1137095520, 3433306896, 10347106860, 31141984140, 93639862200, 281372571720, 845074016772, 2537235316548, 7615933808400, 22856659795584, 68588501433564
Offset: 5

Views

Author

Geoffrey Critzer, Apr 19 2022

Keywords

Comments

Let A be an alphabet containing m letters. Let S be the set of m^2-m ordered two-tuples of distinct letters in A. The generating function for the number of length n words on A that contain each two-tuple in S as a (not necessarily contiguous) subword is m*(m-1)!^2*x^(2*m-1)/((1-m*x)*Product_{k=1..m-1} (1-k*x)^2).
Appears to equal 12 times A222993, except that sequence only has a conjectured formula. - N. J. A. Sloane, Jun 17 2022

Examples

			a(5) = 12 because we have: {0, 1, 2, 0, 1}, {0, 1, 2, 1, 0}, {0, 2, 1, 0, 2}, {0, 2, 1, 2, 0}, {1, 0, 2, 0, 1}, {1, 0, 2, 1, 0}, {1, 2, 0, 1, 2}, {1, 2, 0, 2, 1}, {2, 0, 1, 0, 2}, {2, 0, 1, 2, 0}, {2, 1, 0, 1, 2}, {2, 1, 0, 2, 1}.
		

Crossrefs

Cf. A058809, A222993, A005803 (binary words).

Programs

  • Mathematica
    nn = 15; vertices = Level[Outer[ List, {a, b, c}, {d, e, f}, {h, i, j}, {k, l, m}, {n, o, p}, {q, r, s}], {6}]; x = {a -> b, d -> e, i -> j, o -> p}; y = {b -> c, h -> i, k -> l, r -> s}; z = {e -> f, l -> m, n -> o, q -> r}; replacementlist = Table[vertices[[kk]] -> kk, {kk, 1, 729}]; G= Normal[SparseArray[Flatten[Table[Normal[Merge[ Map[{mm, vertices[[mm]] /. # /. replacementlist} -> 1 &, {x, y, z}], Total]], {mm, 1, 729}]]]]; Iwg =
    Inverse[IdentityMatrix[729] - w G]; CoefficientList[ Series[Iwg[[1, 729]], {w, 0, nn}], w]

Formula

G.f.: (12*x^5)/((1 - 2*x)^2*(1 - x)^2*(1 - 3*x)).

A059517 The sequence A059515(3,n). Number of ways of placing n identifiable nonnegative intervals with a total of exactly three starting and/or finishing points.

Original entry on oeis.org

0, 0, 12, 138, 1056, 7050, 44472, 273378, 1659936, 10018650, 60289032, 362265618, 2175188016, 13055911050, 78349815192, 470141937858, 2820980767296, 16926272024250, 101558794406952, 609356253226098, 3656147979709776, 21936919259318250, 131621609699088312
Offset: 0

Views

Author

Henry Bottomley, Jan 19 2001

Keywords

Examples

			a(2)=12 since if aA indicates a zero length interval and a-A one of positive length the possibilities are: aA-b-B, b-aA-B, b-B-aA, bB-a-A, a-bB-A, a-A-bB, ab-A-B, ab-B-A, a-b-AB, b-a-AB, a-bA-B, b-a-AB.
		

Crossrefs

Cf. A059516.

Programs

  • PARI
    concat([0,0], Vec(-6*x^2*(3*x+2)/((x-1)*(3*x-1)*(6*x-1)) + O(x^100))) \\ Colin Barker, Sep 13 2014

Formula

a(n) = A058809(n)+A059116(n) = 6^n-3*3^n+3 (for n>0).
a(n) = 10*a(n-1)-27*a(n-2)+18*a(n-3) for n>3. - Colin Barker, Sep 13 2014
G.f.: -6*x^2*(3*x+2) / ((x-1)*(3*x-1)*(6*x-1)). - Colin Barker, Sep 13 2014

Extensions

More terms from Colin Barker, Sep 13 2014
Previous Showing 11-14 of 14 results.