A058951
Coefficients of monic primitive irreducible polynomials over GF(7) listed in lexicographic order.
Original entry on oeis.org
12, 14, 113, 123, 125, 135, 145, 153, 155, 163, 1032, 1052, 1062, 1112, 1124, 1152, 1154, 1214, 1242, 1262, 1264, 1304, 1314, 1322, 1334, 1352, 1354, 1362, 1422, 1432, 1434, 1444, 1504, 1524, 1532, 1534, 1542, 1552, 1564, 1604, 1612, 1632, 1644, 1654
Offset: 1
Irreducible over GF(2), GF(3), GF(4), GF(5), GF(7):
A058943,
A058944,
A058948,
A058945,
A058946. Primitive irreducible over GF(2), GF(3), GF(4), GF(5), GF(7):
A058947,
A058949,
A058952,
A058950,
A058951.
-
car = 7; maxDegree = 4;
okQ[coefs_List] := Module[{P}, P = coefs.x^Range[Length[coefs] - 1, 0, -1]; coefs[[1]] == 1 && IrreduciblePolynomialQ[P, Modulus -> car] && PrimitivePolynomialQ[P, car]];
FromDigits /@ Select[Table[IntegerDigits[k, car], {k, car+1, car^(maxDegree + 1)}], okQ] (* Jean-François Alcover, Sep 10 2019 *)
More terms from Jean Gaumont (jeangaum87(AT)yahoo.com), Apr 16 2006
A212906
Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(3) listed in ascending order.
Original entry on oeis.org
1, 2, 4, 8, 13, 26, 5, 10, 16, 20, 40, 80, 11, 22, 121, 242, 7, 14, 28, 52, 56, 91, 104, 182, 364, 728, 1093, 2186, 32, 41, 82, 160, 164, 205, 328, 410, 656, 820, 1312, 1640, 3280, 6560, 757, 1514, 9841, 19682, 44, 61, 88, 122, 244, 484, 488, 671, 968, 1342
Offset: 1
Triangle T(n,k) begins:
1, 2;
4, 8;
13, 26;
5, 10, 16, 20, 40, 80;
11, 22, 121, 242;
7, 14, 28, 52, 56, 91, 104, 182, 364, 728;
- R. Lidl and H. Niederreiter, Finite Fields, 2nd ed., Cambridge Univ. Press, 1997, Table C, pp. 555-557.
- V. I. Arnol'd, Topology and statistics of formulas of arithmetics, Uspekhi Mat. Nauk, 58:4(352) (2003), 3-28
-
with(numtheory):
M:= proc(n) option remember;
divisors(3^n-1) minus U(n-1)
end:
U:= proc(n) option remember;
`if`(n=0, {}, M(n) union U(n-1))
end:
T:= n-> sort([M(n)[]])[]:
seq(T(n), n=1..15); # Alois P. Heinz, Jun 02 2012
-
M[n_] := M[n] = Divisors[3^n - 1] ~Complement~ U[n - 1];
U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n - 1]];
T[n_] := Sort[M[n]]; Array[T, 15] // Flatten (* Jean-François Alcover, Jun 10 2018, after Alois P. Heinz *)
A212485
Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(5) listed in ascending order.
Original entry on oeis.org
1, 2, 4, 3, 6, 8, 12, 24, 31, 62, 124, 13, 16, 26, 39, 48, 52, 78, 104, 156, 208, 312, 624, 11, 22, 44, 71, 142, 284, 781, 1562, 3124, 7, 9, 14, 18, 21, 28, 36, 42, 56, 63, 72, 84, 93, 126, 168, 186, 217, 248, 252, 279, 372, 434, 504, 558, 651, 744, 868, 1116
Offset: 1
Triangle T(n,k) begins:
1, 2, 4;
3, 6, 8, 12, 24;
31, 62, 124;
13, 16, 26, 39, 48, 52, 78, 104, 156, 208, 312, 624;
11, 22, 44, 71, 142, 284, 781, 1562, 3124;
...
- R. Lidl and H. Niederreiter, Finite Fields, 2nd ed., Cambridge Univ. Press, 1997, Table C, pp. 557-560.
-
with(numtheory):
M:= proc(n) option remember;
`if`(n=1, {1, 2, 4}, divisors(5^n-1) minus U(n-1))
end:
U:= proc(n) option remember;
`if`(n=0, {}, M(n) union U(n-1))
end:
T:= n-> sort([M(n)[]])[]:
seq(T(n), n=1..8);
-
M[n_] := M[n] = If[n == 1, {1, 2, 4}, Divisors[5^n-1] ~Complement~ U[n-1]];
U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n - 1]];
T[n_] := Sort[M[n]]; Array[T, 8] // Flatten (* Jean-François Alcover, Jun 10 2018, from Maple *)
A212486
Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(7) listed in ascending order.
Original entry on oeis.org
1, 2, 3, 6, 4, 8, 12, 16, 24, 48, 9, 18, 19, 38, 57, 114, 171, 342, 5, 10, 15, 20, 25, 30, 32, 40, 50, 60, 75, 80, 96, 100, 120, 150, 160, 200, 240, 300, 400, 480, 600, 800, 1200, 2400, 2801, 5602, 8403, 16806, 36, 43, 72, 76, 86, 129, 144, 152, 172, 228, 258
Offset: 1
Triangle T(n,k) begins:
1, 2, 3, 6;
4, 8, 12, 16, 24, 48;
9, 18, 19, 38, 57, 114, 171, 342;
5, 10, 15, 20, 25, 30, 32, 40, 50, 60, 75, 80, 96, 100, 120, 150, 160, 200, 240, 300, 400, 480, 600, 800, 1200, 2400;
...
- R. Lidl and H. Niederreiter, Finite Fields, 2nd ed., Cambridge Univ. Press, 1997, Table C, pp. 560-562.
- V. I. Arnol'd, Topology and statistics of formulas of arithmetics, Uspekhi Mat. Nauk, 58:4(352) (2003), 3-28
-
with(numtheory):
M:= proc(n) option remember;
`if`(n=1, {1, 2, 3, 6}, divisors(7^n-1) minus U(n-1))
end:
U:= proc(n) option remember;
`if`(n=0, {}, M(n) union U(n-1))
end:
T:= n-> sort([M(n)[]])[]:
seq(T(n), n=1..7);
-
M[n_] := M[n] = If[n == 1, {1, 2, 3, 6}, Divisors[7^n - 1] ~Complement~ U[n - 1]];
U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n - 1]];
T[n_] := Sort[M[n]];
Table[T[n], {n, 1, 7}] // Flatten (* Jean-François Alcover, Sep 24 2022, from Maple code *)
Comments