cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A059513 Variation of Boustrophedon transform applied to 1,1,1,1,... Fill an array by diagonals, in alternating directions. The first entry is 1 each time. For the next element of a diagonal, add to the previous element the elements of the row and the column the new element is in. The final element of each diagonal gives a(n).

Original entry on oeis.org

1, 2, 6, 23, 116, 736, 5659, 50796, 521040, 6006587, 76874524, 1081439062, 16586149365, 275442822510, 4924040788654
Offset: 1

Views

Author

Floor van Lamoen, Jan 23 2001

Keywords

Examples

			The array begins
1 ....2 ...1 ..23 ..1 ...
1 ....4 ..19 ..48 ...
6 ...13 ..87 ...
1 ..107 ...
116 ...
1 ...
		

Crossrefs

A059574 The array described in A059513 read by antidiagonals in the 'up' direction.

Original entry on oeis.org

1, 1, 2, 6, 4, 1, 1, 13, 19, 23, 116, 107, 87, 48, 1, 1, 243, 458, 635, 708, 736, 5659, 5533, 5163, 4239, 2967, 1517, 1, 1, 11562, 22824, 33291, 41772, 47733, 50031, 50796, 521040, 515254, 497789, 452016, 385422, 301161, 204598, 103125, 1
Offset: 1

Views

Author

Floor van Lamoen, Jan 23 2001

Keywords

Crossrefs

A059505 Transform of A059502 applied to sequence 2,3,4,...

Original entry on oeis.org

2, 5, 14, 40, 114, 323, 910, 2551, 7120, 19796, 54852, 151525, 417434, 1147145, 3145394, 8606848, 23507190, 64093031, 174474790, 474261691, 1287398452, 3490267820, 9451319304, 25565098825, 69080289074
Offset: 1

Views

Author

Floor van Lamoen, Jan 19 2001

Keywords

Comments

The second row of the array A059503.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6,-11,6,-1},{2,5,14,40}, 50] (* or *) Rest[CoefficientList[Series[x*(2 - 7*x + 6*x^2 - x^3)/(1 - 3*x + x^2)^2, {x,0,50}], x]] (* G. C. Greubel, Sep 10 2017 *)
  • PARI
    x='x+O('x^50); Vec(x*(2-7*x+6*x^2-x^3)/(1-3*x+x^2)^2) \\ G. C. Greubel, Sep 10 2017

Formula

G.f.: x*(2 - 7*x + 6*x^2 - x^3)/(1 - 3*x + x^2)^2.
From G. C. Greubel, Sep 10 2017: (Start)
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4).
a(n) = ((3 - n)*Fibonacci(2*n) + (5 + 3*n)*Fibonacci(2*n - 1))/5. (End)

A059506 Transform of A059502 applied to sequence 3,4,5,...

Original entry on oeis.org

3, 7, 19, 53, 148, 412, 1143, 3161, 8717, 23977, 65798, 180182, 492459, 1343563, 3659623, 9953117, 27031768, 73320496, 198632607, 537507677, 1452978593, 3923762257, 10586222474, 28536313898, 76859031123
Offset: 1

Views

Author

Floor van Lamoen, Jan 19 2001

Keywords

Comments

The third row of the array A059503.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6,-11,6,-1},{3,7,19,53},30] (* Harvey P. Dale, Jul 30 2015 *)
    Rest[CoefficientList[Series[x*(1 - x)*(2*x^2 - 8*x + 3)/(x^2 - 3*x + 1)^2, {x,0,50}], x]] (* G. C. Greubel, Sep 10 2017 *)
  • PARI
    Vec(x*(1-x)*(2*x^2-8*x+3)/(x^2-3*x+1)^2 + O(x^30)) \\ Michel Marcus, Sep 09 2017

Formula

From Colin Barker, Nov 30 2012: (Start)
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4).
G.f.: x*(1-x)*(2*x^2-8*x+3)/(x^2-3*x+1)^2. (End)
a(n) = ((3 - n)*Fibonacci(2*n) + (10 + 3*n)*Fibonacci(2*n - 1))/5. - G. C. Greubel, Sep 10 2017

A059507 Transform of A059502 applied to sequence 4,5,6,...

Original entry on oeis.org

4, 9, 24, 66, 182, 501, 1376, 3771, 10314, 28158, 76744, 208839, 567484, 1539981, 4173852, 11299386, 30556346, 82547961, 222790424, 600753663, 1618558734, 4357256694, 11721125644, 31507528971, 84637773172
Offset: 1

Views

Author

Floor van Lamoen, Jan 19 2001

Keywords

Comments

The fourth row of the array A059503.

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[x*(1 - x)*(3*x^2 - 11*x + 4)/(x^2 - 3*x + 1)^2, {x, 0, 50}], x]] (* G. C. Greubel, Sep 10 2017 *)
  • PARI
    Vec(x*(1-x)*(3*x^2-11*x+4)/(x^2-3*x+1)^2 + O(x^40)) \\ Michel Marcus, Sep 09 2017

Formula

From Colin Barker, Nov 30 2012: (Start)
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4).
G.f.: x*(1-x)*(3*x^2-11*x+4)/(x^2-3*x+1)^2. (End)
a(n) = ((3 - n)*Fibonacci(2*n) + (15 + 3*n)*Fibonacci(2*n - 1))/5. - G. C. Greubel, Sep 10 2017

A059508 Transform of A059502 applied to sequence 5,6,7,...

Original entry on oeis.org

5, 11, 29, 79, 216, 590, 1609, 4381, 11911, 32339, 87690, 237496, 642509, 1736399, 4688081, 12645655, 34080924, 91775426, 246948241, 663999649, 1784138875, 4790751131, 12856028814, 34478744044, 92416515221
Offset: 1

Views

Author

Floor van Lamoen, Jan 19 2001

Keywords

Comments

The fifth row of the array A059503.

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[x*(1-x)*(4*x^2 - 14*x + 5)/(x^2 - 3*x + 1)^2, {x, 0, 50}], x]] (* G. C. Greubel, Sep 10 2017 *)
  • PARI
    Vec(-x*(x-1)*(4*x^2-14*x+5)/(x^2-3*x+1)^2 + O(x^40)) \\ Michel Marcus, Sep 09 2017

Formula

From Colin Barker, Nov 30 2012: (Start)
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4).
G.f.: x*(1-x)*(4*x^2-14*x+5)/(x^2-3*x+1)^2. (End)
a(n) = ((3 - n)*Fibonacci(2*n) + (20 + 3*n)*Fibonacci(2*n - 1))/5. - G. C. Greubel, Sep 10 2017

A059575 The array described in A059513 read by antidiagonals in the direction of construction.

Original entry on oeis.org

1, 1, 2, 1, 4, 6, 1, 13, 19, 23, 1, 48, 87, 107, 116, 1, 243, 458, 635, 708, 736, 1, 1517, 2967, 4239, 5163, 5533, 5659, 1, 11562, 22824, 33291, 41772, 47733, 50031, 50796, 1, 103125, 204598, 301161, 385422, 452016, 497789, 515254, 521040
Offset: 1

Views

Author

Floor van Lamoen, Jan 23 2001

Keywords

Crossrefs

Extensions

Sequence contained two errors corrected by N. J. A. Sloane, Jun 14 2005

A059234 The array in A059216 read by antidiagonals in the direction in which it was constructed.

Original entry on oeis.org

1, 1, 2, 1, 3, 5, 1, 6, 10, 14, 1, 15, 26, 37, 45, 1, 46, 84, 121, 150, 169, 1, 170, 321, 471, 592, 686, 740, 1, 741, 1428, 2111, 2704, 3183, 3532, 3721, 1, 3722, 7255, 10777, 13953, 16685, 18826, 20347, 21142, 1, 21143, 41491, 61798, 80598, 97345, 111419
Offset: 1

Views

Author

Floor van Lamoen, Jan 18 2001

Keywords

Examples

			The array begins
   1  2  1 14  1 ...
   1  3 10 15 ...
   5  6 26 ...
   1 37 ...
  45 ...
		

Crossrefs

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jan 23 2001

A059578 Variation of Boustrophedon transform applied to 1,1,1,1,... Fill an array by diagonals, all in the 'up' direction. The first column is 1,1,1,1,.... For the next element of a diagonal, add to the previous element the elements of the row and the column the new element is in. The first row gives a(n).

Original entry on oeis.org

1, 2, 7, 30, 147, 792, 4559, 27500, 171645, 1099388, 7185101, 47724494, 321225165, 2186177302, 15018795171, 104011496474, 725373340023, 5089785834004, 35907469451787, 254541483884544, 1812185157383017, 12951828431246472, 92893383046741073, 668383820775639066
Offset: 1

Views

Author

Floor van Lamoen, Jan 23 2001

Keywords

Examples

			The array begins
1 2 7 30 ...
1 4 20 ...
1 8 ...
1 ...
		

Crossrefs

Extensions

More terms from Sean A. Irvine, Sep 29 2022
Previous Showing 11-19 of 19 results.