A059949
Number of 8-block bicoverings of an n-set.
Original entry on oeis.org
0, 0, 0, 0, 0, 535, 51640, 2771685, 114713760, 4127125695, 136631722920, 4292250804985, 130278290187760, 3863262740532195, 112733098867629240, 3252644718804860925, 93093809127731630400, 2649006256251644780935
Offset: 1
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
A059950
Number of 9-block bicoverings of an n-set.
Original entry on oeis.org
0, 0, 0, 0, 0, 15, 8456, 954213, 66253552, 3622342095, 172672602432, 7557346901841, 312733696544984, 12456923582109435, 483124650731622328, 18383758048494864909, 689931203330381971296, 25630900118611348761735, 945025181750878420241744, 34647077709586498046291817
Offset: 1
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
A094573
Triangle T(n,k) giving number of (<=2)-covers of an n-set with k blocks.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 12, 20, 7, 1, 39, 169, 186, 59, 3, 1, 120, 1160, 2755, 2243, 661, 55, 1, 363, 7381, 33270, 52060, 33604, 9167, 910, 15, 1, 1092, 45500, 367087, 988750, 1126874, 601262, 151726, 16401, 525, 1, 3279, 276529, 3873786, 17005149
Offset: 0
Triangle T(n,k) begins:
1;
1;
1, 3, 1;
1, 12, 20, 7;
1, 39, 169, 186, 59, 3;
1, 120, 1160, 2755, 2243, 661, 55;
...
-
rows = 9; m = rows + 2;
egf = Exp[-x - (x^2/2)*(Exp[y]-1)]*Sum[Exp[y*Binomial[n+1, 2]]*(x^n/n!), {n, 0, m}];
cc = CoefficientList[# + O[x]^m, x]& /@ CoefficientList[egf + O[y]^m, y];
(Range[0, Length[cc]-1]! * cc)[[1 ;; rows]] /. {0, a__} :> {a} // Flatten (* Jean-François Alcover, May 13 2019 *)
A275517
Number of n-block bicoverings of an n-set.
Original entry on oeis.org
1, 0, 0, 4, 39, 472, 7255, 131876, 2771685, 66253552, 1775801814, 52761229240, 1721387545471, 61187851111432, 2353835271333611, 97437447411025008, 4318780849687684325, 204079128112017902848, 10241833975586335217950, 544031400274026445420368
Offset: 0
a(3) = 4: 1|123|23, 12|13|23, 12|123|3, 123|13|2.
A275521
Number of (n+floor(n/2))-block bicoverings of an n-set.
Original entry on oeis.org
1, 0, 1, 4, 3, 40, 15, 420, 105, 5040, 945, 69300, 10395, 1081080, 135135, 18918900, 2027025, 367567200, 34459425, 7856748900, 654729075, 183324141000, 13749310575, 4638100767300, 316234143225, 126493657290000, 7905853580625, 3699939475732500, 213458046676875
Offset: 0
a(2) = 1: 1|12|2.
a(3) = 4: 1|12|23|3, 1|13|2|23, 1|123|2|3, 12|13|2|3.
a(4) = 3: 1|12|2|3|34|4, 1|13|2|24|3|4, 1|14|2|23|3|4.
-
a:= proc(n) option remember; `if`(n<5, [1, 0, 1, 4, 3]
[n+1], ((8*n-41)*a(n-1) +(6*n^2-12*n-12)*a(n-2)
-(n-2)*(8*n-17)*a(n-3)) / (6*n-24))
end:
seq(a(n), n=0..30);
A276640
Triangle T(n, k) = the number of point-labeled graphs with n points and k edges, no points isolated, no edges isolated. By rows, 0 <= n, ceiling(2*n/3) <= k <= binomial(n, 2).
Original entry on oeis.org
1, 3, 1, 16, 15, 6, 1, 125, 222, 205, 120, 45, 10, 1, 90, 1356, 3670, 5700, 6165, 4945, 2997, 1365, 455, 105, 15, 1, 1680, 18942, 69450, 156870, 258160, 331506, 343140, 290745, 202755, 116175, 54257, 20349, 5985, 1330, 210, 21, 1
Offset: 1
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 16 15 6 1 0 0 0 0 0 0 0 0
5 0 0 0 0 125 222 205 120 45 10 1 0 0 0 0
6 0 0 0 0 90 1356 3670 5700 6165 4945 2997 1365 455 105 15
Comments